Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Comp Neurol ; 532(7): e25648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958676

RESUMEN

In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions. About 170 primate-specific KZNFs are present in the human genome. Although KZNFs are primarily associated with repressing retrotransposon-derived DNA, evidence is emerging that they can be co-opted for other gene regulatory processes. We show that genetic deletion of ZNF675 causes developmental defects in cortical organoids, and our data suggest that part of the observed neurodevelopmental phenotype is mediated by a gene regulatory role of ZNF675 on the promoter of the neurodevelopmental gene Hes family BHLH transcription factor 1 (HES1). We also find evidence for the recently evolved regulation of genes involved in neurological disorders, microcephalin 1 and sestrin 3. We show that ZNF675 interferes with HES1 auto-inhibition, a process essential for the maintenance of neural progenitors. As a striking example of how some KZNFs have integrated into preexisting gene expression networks, these findings suggest the emergence of ZNF675 has caused a change in the balance of HES1 autoregulation. The association of ZNF675 CNV with human developmental disorders and ZNF675-mediated regulation of neurodevelopmental genes suggests that it evolved into an important factor for human brain development.


Asunto(s)
Primates , Factor de Transcripción HES-1 , Humanos , Animales , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Primates/genética , Homeostasis/fisiología , Homeostasis/genética , Variaciones en el Número de Copia de ADN/genética , Ratones , Evolución Biológica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
2.
Alzheimers Dement (N Y) ; 10(1): e12440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356471

RESUMEN

INTRODUCTION: While Alzheimer's disease (AD) is defined by amyloid-ß plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS: We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION: Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-ß and tau will be crucial for optimizing personalized treatment strategies. Highlights: A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.

3.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260620

RESUMEN

Alzheimer's disease (AD) and related dementias (ADRD) is a complex disease with multiple pathophysiological drivers that determine clinical symptomology and disease progression. These diseases develop insidiously over time, through many pathways and disease mechanisms and continue to have a huge societal impact for affected individuals and their families. While emerging blood-based biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are associated with faster cognitive decline, the full extension of plasma proteomic changes in ADRD remains unknown. Earlier detection and better classification of the different subtypes may provide opportunities for earlier, more targeted interventions, and perhaps a higher likelihood of successful therapeutic development. In this study, we aim to leverage unbiased mass spectrometry proteomics to identify novel, blood-based biomarkers associated with cognitive decline. 1,786 plasma samples from 1,005 patients were collected over 12 years from partcipants in the Massachusetts Alzheimer's Disease Research Center Longitudinal Cohort Study. Patient metadata includes demographics, final diagnoses, and clinical dementia rating (CDR) scores taken concurrently. The Proteograph™ Product Suite (Seer, Inc.) and liquid-chromatography mass-spectrometry (LC-MS) analysis were used to process the plasma samples in this cohort and generate unbiased proteomics data. Data-independent acquisition (DIA) mass spectrometry results yielded 36,259 peptides and 4,007 protein groups. Linear mixed effects models revealed 138 differentially abundant proteins between AD and healthy controls. Machine learning classification models for AD diagnosis identified potential candidate biomarkers including MBP, BGLAP, and APoD. Cox regression models were created to determine the association of proteins with disease progression and suggest CLNS1A, CRISPLD2, and GOLPH3 as targets of further investigation as potential biomarkers. The Proteograph workflow provided deep, unbiased coverage of the plasma proteome at a speed that enabled a cohort study of almost 1,800 samples, which is the largest, deep, unbiased proteomics study of ADRD conducted to date.

4.
Nat Commun ; 15(1): 3777, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710683

RESUMEN

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. A comparison of batch effect correction methods across five diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that the overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Redes Neurales de la Computación , Reproducibilidad de los Resultados
5.
Res Sq ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461556

RESUMEN

Background: Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods: In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results: Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions: The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.

6.
Res Sq ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461653

RESUMEN

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions and data acquisition techniques, significantlyimpacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of proteomics research, but current methods are not optimal for removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. Comparison of batch effect correction methods across three diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.

7.
Sci Rep ; 13(1): 22406, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104170

RESUMEN

Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hidrocéfalo Normotenso , Humanos , Enfermedad de Alzheimer/psicología , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/psicología , Espectrometría de Masas , Glucólisis , Glucosa , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
8.
Biomacromolecules ; 11(4): 1118-24, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20187614

RESUMEN

The autocatalytic equation derived in this study describes and even predicts the evolution of the number average molecular weight of aliphatic polyesters upon hydrolytic degradation. The main reaction in the degradation of aliphatic polyesters is autocatalytic hydrolysis of ester bonds, which causes the molecular weight to decrease. During hydrolysis of the ester bonds in the main chain of the polyester, the chains are cleaved and the end group concentrations will rise. The fundamentals of this equation are based on that principle. To validate the derived equation, the hydrolytic degradation of poly(4-methylcaprolactone), poly(epsilon-caprolactone), poly(d,l-lactide), and two different poly(d,l-lactide-co-glycolide) copolymers was monitored after immersion in a PBS buffer (pH = 7.4) at 37 degrees C. The number average molecular weight, mass loss, and crystallinity were determined after different time intervals. The experimental results confirm that hydrolytic degradation of aliphatic polyesters is a bulk erosion process. When comparing the M(n), calculated with the new autocatalytic equation, with the experimental results, it was found that the new model can predict the decrease of the M(n) upon hydrolytic degradation for semicrystalline and amorphous polymers, as well as for copolymers, without the need for complicated mathematics and excessive input parameters. This is a major improvement with respect to earlier proposed models in literature.


Asunto(s)
Ácido Láctico/metabolismo , Poliésteres/metabolismo , Ácido Poliglicólico/metabolismo , Polímeros/metabolismo , Catálisis , Hidrólisis , Cinética , Ácido Láctico/química , Modelos Teóricos , Peso Molecular , Método de Montecarlo , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/síntesis química , Polímeros/química
9.
Biomacromolecules ; 9(12): 3404-10, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18975906

RESUMEN

We systematically investigated a series of polymers derived from macrolactones, namely, pentadecalactone, hexadecalactone, and their unsaturated analogues ambrettolide and globalide as potential biomaterials. By enzymatic ring-opening polymerization these monomers can conveniently be polymerized to high molecular weight. The polymers are highly crystalline with melting points around 95 degrees C for the saturated polymers and lower melting points for the unsaturated polymers (46-55 degrees C). All polymers are nontoxic as measured by an MTT assay for metabolic cell activity of a 3T3 mouse fibroblast cell line. Degradation studies showed no hydrolytic or enzymatic degradability of the polymers, which was ascribed to the high crystallinity and hydrophobicity of the materials. The unsaturated polymers were cross-linked in the melt, yielding fully amorphous transparent materials with a gel content of 97%.


Asunto(s)
Materiales Biocompatibles/síntesis química , Lactonas/química , Lipasa/química , Polímeros/síntesis química , Células 3T3 , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Enzimas Inmovilizadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Fúngicas , Ensayo de Materiales , Ratones , Estructura Molecular , Peso Molecular , Polímeros/efectos adversos , Polímeros/química , Temperatura de Transición
11.
J Am Chem Soc ; 127(8): 2384-5, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15724980

RESUMEN

We demonstrate the single-step one-pot synthesis of block copolymers by simultaneous enzymatic ring-opening polymerization and chemically catalyzed atom transfer radical polymerization in supercritical carbon dioxide. Both catalyst systems function simultaneously under these conditions, providing a simple route to the formation of block copolymers of dissimilar monomers.


Asunto(s)
Caproatos/química , Dióxido de Carbono/química , Lactonas/química , Metilmetacrilatos/química , Poliésteres/síntesis química , Polimetil Metacrilato/síntesis química , Poliésteres/química , Polimetil Metacrilato/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA