Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686582

RESUMEN

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Asunto(s)
Circulación Colateral/fisiología , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Quimiocina CXCL12/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Transducción de Señal
2.
PLoS Pathog ; 19(1): e1011063, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634048

RESUMEN

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2 , Pulmón , Reacciones Cruzadas
3.
Eur Respir J ; 61(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024132

RESUMEN

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Ratones , Animales , Hipertensión Arterial Pulmonar/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipoxia/metabolismo
4.
Respir Res ; 24(1): 59, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810085

RESUMEN

OBJECTIVES: To investigate whether COVID-19 patients with pulmonary embolism had higher mortality and assess the utility of D-dimer in predicting acute pulmonary embolism. PATIENTS AND METHODS: Using the National Collaborative COVID-19 retrospective cohort, a cohort of hospitalized COVID-19 patients was studied to compare 90-day mortality and intubation outcomes in patients with and without pulmonary embolism in a multivariable cox regression analysis. The secondary measured outcomes in 1:4 propensity score-matched analysis included length of stay, chest pain incidence, heart rate, history of pulmonary embolism or DVT, and admission laboratory parameters. RESULTS: Among 31,500 hospitalized COVID-19 patients, 1117 (3.5%) patients were diagnosed with acute pulmonary embolism. Patients with acute pulmonary embolism were noted to have higher mortality (23.6% vs.12.8%; adjusted Hazard Ratio (aHR) = 1.36, 95% CI [1.20-1.55]), and intubation rates (17.6% vs. 9.3%, aHR = 1.38[1.18-1.61]). Pulmonary embolism patients had higher admission D-dimer FEU (Odds Ratio(OR) = 1.13; 95%CI [1.1-1.15]). As the D-dimer value increased, the specificity, positive predictive value, and accuracy of the test increased; however, sensitivity decreased (AUC 0.70). At cut-off D-dimer FEU 1.8 mcg/ml, the test had clinical utility (accuracy 70%) in predicting pulmonary embolism. Patients with acute pulmonary embolism had a higher incidence of chest pain and history of pulmonary embolism or deep vein thrombosis. CONCLUSIONS: Acute pulmonary embolism is associated with worse mortality and morbidity outcomes in COVID-19. We present D-dimer as a predictive risk tool in the form of a clinical calculator for the diagnosis of acute pulmonary embolism in COVID-19.


Asunto(s)
COVID-19 , Embolia Pulmonar , Humanos , Estudios Retrospectivos , Embolia Pulmonar/diagnóstico , Valor Predictivo de las Pruebas , Dolor en el Pecho
5.
Circulation ; 144(19): e287-e305, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34601955

RESUMEN

Myocardial injury after noncardiac surgery is defined by elevated postoperative cardiac troponin concentrations that exceed the 99th percentile of the upper reference limit of the assay and are attributable to a presumed ischemic mechanism, with or without concomitant symptoms or signs. Myocardial injury after noncardiac surgery occurs in ≈20% of patients who have major inpatient surgery, and most are asymptomatic. Myocardial injury after noncardiac surgery is independently and strongly associated with both short-term and long-term mortality, even in the absence of clinical symptoms, electrocardiographic changes, or imaging evidence of myocardial ischemia consistent with myocardial infarction. Consequently, surveillance of myocardial injury after noncardiac surgery is warranted in patients at high risk for perioperative cardiovascular complications. This scientific statement provides diagnostic criteria and reviews the epidemiology, pathophysiology, and prognosis of myocardial injury after noncardiac surgery. This scientific statement also presents surveillance strategies and treatment approaches.


Asunto(s)
Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/terapia , Anciano , Anciano de 80 o más Años , American Heart Association , Humanos , Persona de Mediana Edad , Medición de Riesgo , Estados Unidos
6.
BMC Cardiovasc Disord ; 22(1): 122, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317745

RESUMEN

Stem-cell derived in vitro cardiac models have provided profound insights into mechanisms in cardiac development and disease. Efficient differentiation of specific cardiac cell types from human pluripotent stem cells using a three-step Wnt signaling modulation has been one of the major discoveries that has enabled personalized cardiovascular disease modeling approaches. Generation of cardiac cell types follow key development stages during embryogenesis, they intuitively are excellent models to study cardiac tissue patterning in primitive cardiac structures. Here, we provide a brief overview of protocols that have laid the foundation for derivation of stem-cell derived three-dimensional cardiac models. Further this article highlights features and utility of the models to distinguish the advantages and trade-offs in modeling embryonic development and disease processes. Finally, we discuss the challenges in improving robustness in the current models and utilizing developmental principles to bring higher physiological relevance. In vitro human cardiac models are complimentary tools that allow mechanistic interrogation in a reductionist way. The unique advantage of utilizing patient specific stem cells and continued improvements in generating reliable organoid mimics of the heart will boost predictive power of these tools in basic and translational research.


Asunto(s)
Organoides , Células Madre Pluripotentes , Diferenciación Celular , Corazón , Humanos , Organoides/fisiología
7.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L17-L28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881927

RESUMEN

In pulmonary arterial hypertension, plexiform lesions are associated with severe arterial obstruction and right ventricular failure. Exploring their structure and position is crucial for understanding the interplay between hemodynamics and vascular remodeling. The aim of this research was to use synchrotron-based phase-contrast micro-CT to study the three-dimensional structure of plexiform lesions. Archived paraffin-embedded tissue samples from 14 patients with pulmonary arterial hypertension (13 idiopathic, 1 with known BMPR2-mutation) were imaged. Clinical data showed high-median PVR (12.5 WU) and mPAP (68 mmHg). Vascular lesions with more than 1 lumen were defined as plexiform. Prior radiopaque dye injection in some samples facilitated 3-D rendering. Four distinct types of plexiform lesions were identified: 1) localized within or derived from monopodial branches (supernumerary arteries), often with a connection to the vasa vasorum; 2) localized between pulmonary arteries and larger airways as a tortuous transformation of intrapulmonary bronchopulmonary anastomoses; 3) as spherical structures at unexpected abrupt ends of distal pulmonary arteries; and 4) as occluded pulmonary arteries with recanalization. By appearance and localization, types 1-2 potentially relieve pressure via the bronchial circulation, as pulmonary arteries in these patients were almost invariably occluded distally. In addition, types 1-3 were often surrounded by dilated thin-walled vessels, often connected to pulmonary veins, peribronchial vessels, or the vasa vasorum. Collaterals, bypassing completely occluded pulmonary arteries, were also observed to originate within plexiform lesions. In conclusion, synchrotron-based imaging revealed significant plexiform lesion heterogeneity, resulting in a novel classification. The four types likely have different effects on hemodynamics and disease progression.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/diagnóstico , Microscopía de Contraste de Fase/métodos , Arteria Pulmonar/patología , Sincrotrones/instrumentación , Microtomografía por Rayos X/métodos , Adulto , Estudios de Casos y Controles , Hipertensión Pulmonar Primaria Familiar/clasificación , Hipertensión Pulmonar Primaria Familiar/diagnóstico por imagen , Femenino , Hemodinámica , Humanos , Masculino , Remodelación Vascular
8.
Annu Rev Med ; 70: 45-59, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30216732

RESUMEN

Pulmonary arterial hypertension (PAH) is a pulmonary vasculopathy that causes right ventricular dysfunction and exercise limitation and progresses to death. New findings from translational studies have suggested alternative pathways for treatment. These avenues include sex hormones, genetic abnormalities and DNA damage, elastase inhibition, metabolic dysfunction, cellular therapies, and anti-inflammatory approaches. Both novel and repurposed compounds with rationale from preclinical experimental models and human cells are now in clinical trials in patients with PAH. Findings from these studies will elucidate the pathobiology of PAH and may result in clinically important improvements in outcome.


Asunto(s)
Antihipertensivos/uso terapéutico , Sistemas de Liberación de Medicamentos , Insuficiencia Cardíaca/prevención & control , Hipertensión Pulmonar/terapia , Medicina de Precisión/tendencias , Terapia Combinada , Progresión de la Enfermedad , Femenino , Predicción , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/epidemiología , Masculino , Pronóstico , Medición de Riesgo , Índice de Severidad de la Enfermedad , Análisis de Supervivencia
9.
Eur Respir J ; 57(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33334941

RESUMEN

No prior proteomic screening study has centred on the right ventricle (RV) in pulmonary arterial hypertension (PAH). This study investigates the circulating proteomic profile associated with right heart maladaptive phenotype (RHMP) in PAH.Plasma proteomic profiling was performed using multiplex immunoassay in 121 (discovery cohort) and 76 (validation cohort) PAH patients. The association between proteomic markers and RHMP, defined by the Mayo right heart score (combining RV strain, New York Heart Association (NYHA) class and N-terminal pro-brain natriuretic peptide (NT-proBNP)) and Stanford score (RV end-systolic remodelling index, NYHA class and NT-proBNP), was assessed by partial least squares regression. Biomarker expression was measured in RV samples from PAH patients and controls, and pulmonary artery banding (PAB) mice.High levels of hepatocyte growth factor (HGF), stem cell growth factor-ß, nerve growth factor and stromal derived factor-1 were associated with worse Mayo and Stanford scores independently from pulmonary resistance or pressure in both cohorts (the validation cohort had more severe disease features: lower cardiac index and higher NT-proBNP). In both cohorts, HGF added value to the REVEAL score in the prediction of death, transplant or hospitalisation at 3 years. RV expression levels of HGF and its receptor c-Met were higher in end-stage PAH patients than controls, and in PAB mice than shams.High plasma HGF levels are associated with RHMP and predictive of 3-year clinical worsening. Both HGF and c-Met RV expression levels are increased in PAH. Assessing plasma HGF levels might identify patients at risk of heart failure who warrant closer follow-up and intensified therapy.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Estudios de Cohortes , Hipertensión Pulmonar Primaria Familiar , Humanos , Ratones , Péptido Natriurético Encefálico , Proteómica
10.
Am J Respir Crit Care Med ; 201(2): 148-157, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31513751

RESUMEN

Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.


Asunto(s)
Trastornos Cerebrovasculares/fisiopatología , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedades Renales/fisiopatología , Enfermedades Musculares/fisiopatología , Hipertensión Arterial Pulmonar/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Arterias Bronquiales/patología , Arterias Bronquiales/fisiopatología , Circulación Cerebrovascular , Enfermedad de la Arteria Coronaria/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Musculares/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Músculos Respiratorios/fisiopatología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/fisiopatología , Vasodilatación , Disfunción Ventricular Derecha/metabolismo
11.
Am J Respir Crit Care Med ; 202(10): 1445-1457, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32634060

RESUMEN

Rationale: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored.Objectives: To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRß (platelet-derived growth factor receptor ß) signaling pathway and to investigate its role in PAH.Methods: Pericytes and pulmonary arterial smooth muscle cells exposed to hypoxia and derived from patients with idiopathic PAH were analyzed with RNA sequencing. TYKRIL knockdown was performed in above-mentioned human primary cells and in precision-cut lung slices derived from patients with PAH.Measurements and Main Results: Using RNA sequencing data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells exposed to hypoxia and derived from patients with idiopathic PAH. TYKRIL knockdown reversed the proproliferative (n = 3) and antiapoptotic (n = 3) phenotype induced under hypoxic and idiopathic PAH conditions. Owing to the poor species conservation of TYKRIL, ex vivo studies were performed in precision-cut lung slices from patients with PAH. Knockdown of TYKRIL in precision-cut lung slices decreased the vascular remodeling (n = 5). The number of proliferating cell nuclear antigen-positive cells in the vessels was decreased and the number of terminal deoxynucleotide transferase-mediated dUTP nick end label-positive cells in the vessels was increased in the LNA (locked nucleic acid)-treated group compared with control. Expression of PDGFRß, a key player in PAH, was found to strongly correlate with TYKRIL expression in the patient samples (n = 12), and TYKRIL knockdown decreased PDGFRß expression (n = 3). From the transcription factor-screening array, it was observed that TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRß. RNA immunoprecipitation using various p53 mutants demonstrated that TYKRIL binds to the N-terminal of p53 (an important region for p300 interaction with p53). The proximity ligation assay revealed that TYKRIL interferes with the p53-p300 interaction (n = 3) and regulates p53 nuclear translocation.Conclusions: TYKRIL plays an important role in PAH by regulating the p53/PDGFRß axis.


Asunto(s)
Expresión Génica , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Proteínas Tirosina Quinasas/genética , ARN Largo no Codificante , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Am J Respir Crit Care Med ; 201(11): 1407-1415, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31916850

RESUMEN

Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH).Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH.Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis.Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P = 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P = 0.034).Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/mortalidad , Población Blanca/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia , Estados Unidos/epidemiología
13.
Am J Respir Cell Mol Biol ; 62(6): 747-759, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32084325

RESUMEN

Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.


Asunto(s)
Quimiocina CXCL12/fisiología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Animales , Antígenos/análisis , Bencilaminas , División Celular , Linaje de la Célula , Quimiocina CXCL12/genética , Enfermedad Crónica , Ciclamas , ADN Nucleotidilexotransferasa/análisis , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/prevención & control , Hipoxia/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteoglicanos/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores CXCR4/antagonistas & inhibidores , Proteínas Recombinantes/farmacología , Transducción de Señal , Vasoconstricción
14.
Circulation ; 139(14): 1710-1724, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30586764

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS: Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS: Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS: We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Pericitos/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Proteína Wnt-5a/deficiencia , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Hipoxia de la Célula , Polaridad Celular , Células Cultivadas , Niño , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Exosomas/metabolismo , Exosomas/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Patológica , Comunicación Paracrina , Pericitos/patología , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Ratas , Vía de Señalización Wnt , Proteína Wnt-5a/genética
15.
Exp Eye Res ; 193: 107957, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32032627

RESUMEN

Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.


Asunto(s)
Hipoxia/complicaciones , Neuroglía/patología , Enfermedades del Nervio Óptico/diagnóstico , Nervio Óptico/patología , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Femenino , Hipoxia/diagnóstico , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Enfermedades del Nervio Óptico/etiología , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos
19.
Am J Respir Crit Care Med ; 197(6): 788-800, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28934596

RESUMEN

RATIONALE: Although amphetamines are recognized as "likely" agents to cause drug- and toxin-associated pulmonary arterial hypertension (PAH), (meth)amphetamine-associated PAH (Meth-APAH) has not been well described. OBJECTIVES: To prospectively characterize the clinical presentation, histopathology, and outcomes of Meth-APAH compared with those of idiopathic PAH (iPAH). METHODS: We performed a prospective cohort study of patients with Meth-APAH and iPAH presenting to the Stanford University Pulmonary Hypertension Program between 2003 and 2015. Clinical, pulmonary angiography, histopathology, and outcomes data were compared. We used data from the Healthcare Cost and Utilization Project to estimate the epidemiology of PAH in (meth)amphetamine users hospitalized in California. MEASUREMENTS AND MAIN RESULTS: The study sample included 90 patients with Meth-APAH and 97 patients with iPAH. Patients with Meth-APAH were less likely to be female, but similar in age, body mass index, and 6-minute-walk distance to patients with iPAH. Patients with Meth-APAH reported more advanced heart failure symptoms, had significantly higher right atrial pressure (12.7 ± 6.8 vs. 9.8 ± 5.1 mm Hg; P = 0.001), and had lower stroke volume index (22.2 ± 7.1 vs. 25.5 ± 8.7 ml/m2; P = 0.01). Event-free survival in Meth-APAH was 64.2%, 47.2%, and 25% at 2.5, 5, and 10 years, respectively, representing more than double the risk of clinical worsening or death compared with iPAH (hazard ratio, 2.04; 95% confidence interval, 1.28-3.25; P = 0.003) independent of confounders. California data demonstrated a 2.6-fold increase in risk of PAH diagnosis in hospitalized (meth)amphetamine users. CONCLUSIONS: Meth-APAH is a severe and progressive form of PAH with poor outcomes. Future studies should focus on mechanisms of disease and potential therapeutic considerations.


Asunto(s)
Estimulantes del Sistema Nervioso Central/efectos adversos , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/fisiopatología , Metanfetamina/efectos adversos , Adulto , California/epidemiología , Causalidad , Estudios de Cohortes , Comorbilidad , Femenino , Cardiopatías/epidemiología , Cardiopatías/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Distribución por Sexo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA