Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 300, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187360

RESUMEN

BACKGROUND: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. RESULTS: In this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. CONCLUSIONS: Our results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.


Asunto(s)
Aluminio/metabolismo , Proteínas de Transporte de Anión/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Aluminio/toxicidad , Proteínas de Transporte de Anión/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saccharum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transcriptoma
2.
Biotechnol Biofuels ; 12: 111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080518

RESUMEN

BACKGROUND: Sugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. In this paper, we report an approach to improving saccharification of sugarcane straw by RNAi silencing of the recently discovered BAHD01 gene responsible for feruloylation of grass cell walls. RESULTS: We identified six BAHD genes in the sugarcane genome (SacBAHDs) and generated five lines with substantially decreased SacBAHD01 expression. To find optimal conditions for determining saccharification of sugarcane straw, we tried multiple combinations of solvent and temperature pretreatment conditions, devising a predictive model for finding their effects on glucose release. Under optimal conditions, demonstrated by Organosolv pretreatment using 30% ethanol for 240 min, transgenic lines showed increases in saccharification efficiency of up to 24%. The three lines with improved saccharification efficiency had lower cell-wall ferulate content but unchanged monosaccharide and lignin compositions. CONCLUSIONS: The silencing of SacBAHD01 gene and subsequent decrease of cell-wall ferulate contents indicate a promising novel biotechnological approach for improving the suitability of sugarcane residues for cellulosic ethanol production. In addition, the Organosolv pretreatment of the genetically modified biomass and the optimal conditions for the enzymatic hydrolysis presented here might be incorporated in the sugarcane industry for bioethanol production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA