Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genome Res ; 25(3): 445-58, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25589440

RESUMEN

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.


Asunto(s)
Drosophila melanogaster/genética , Genoma , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Biología Computacional , Mapeo Contig , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Cromosomas Politénicos , Mapeo Restrictivo
2.
Chromosoma ; 120(4): 387-97, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21533987

RESUMEN

Sciara coprophila (Diptera, Nematocera) constitutes a classic model to analyze unusual chromosome behavior such as the somatic elimination of paternal X chromosomes, the elimination of the whole paternal, plus non-disjunction of the maternal X chromosome at male meiosis. The molecular organization of the heterochromatin in S. coprophila is mostly unknown except for the ribosomal DNA located in the X chromosome pericentromeric heterochromatin. The characterization of the centromeric regions, thus, is an essential and required step for the establishment of S. coprophila as a model system to study fundamental mechanisms of chromosome segregation. To accomplish such a study, heterochromatic sections of the X chromosome centromeric region from salivary glands polytene chromosomes were microdissected and microcloned. Here, we report the identification and characterization of two tandem repeated DNA sequences from the pericentromeric region of the X chromosome, a pericentromeric RTE element and an AT-rich centromeric satellite. These sequences will be important tools for the cloning of S. coprophila centromeric heterochromatin using libraries of large genomic clones.


Asunto(s)
Centrómero/química , ADN/química , Dípteros/genética , Heterocromatina/química , Larva/genética , Cromosomas Politénicos/química , Secuencias Repetidas en Tándem/genética , Cromosoma X/química , Animales , Centrómero/genética , Mapeo Cromosómico , ADN/genética , Heterocromatina/genética , Hibridación Fluorescente in Situ , Masculino , Meiosis/genética , Datos de Secuencia Molecular , Filogenia , Cromosomas Politénicos/genética , Glándulas Salivales/química , Glándulas Salivales/citología , Fijación del Tejido , Cromosoma X/genética
3.
Mol Biol Evol ; 28(7): 1967-71, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21297157

RESUMEN

The non-recombining Y chromosome is expected to degenerate over evolutionary time, however, gene gain is a common feature of Y chromosomes of mammals and Drosophila. Here, we report that a large palindrome containing interchromosomal segmental duplications is located in the vicinity of the first amplicon detected in the Y chromosome of D. melanogaster. The recent appearance of such amplicons suggests that duplications to the Y chromosome, followed by the amplification of the segmental duplications, are a mechanism for the continuing evolution of Drosophila Y chromosomes.


Asunto(s)
Drosophila melanogaster/genética , Duplicación de Gen , Genes de Insecto , Secuencias Invertidas Repetidas , Cromosoma Y , Animales , Evolución Molecular , Modelos Genéticos , Datos de Secuencia Molecular
4.
Nucleic Acids Res ; 37(7): 2264-73, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19237394

RESUMEN

The centromeric and telomeric heterochromatin of eukaryotic chromosomes is mainly composed of middle-repetitive elements, such as transposable elements and tandemly repeated DNA sequences. Because of this repetitive nature, Whole Genome Shotgun Projects have failed in sequencing these regions. We describe a novel kind of transposon-based approach for sequencing highly repetitive DNA sequences in BAC clones. The key to this strategy relies on physical mapping the precise position of the transposon insertion, which enables the correct assembly of the repeated DNA. We have applied this strategy to a clone from the centromeric region of the Y chromosome of Drosophila melanogaster. The analysis of the complete sequence of this clone has allowed us to prove that this centromeric region evolved from a telomere, possibly after a pericentric inversion of an ancestral telocentric chromosome. Our results confirm that the use of transposon-mediated sequencing, including positional mapping information, improves current finishing strategies. The strategy we describe could be a universal approach to resolving the heterochromatic regions of eukaryotic genomes.


Asunto(s)
Centrómero/química , Drosophila melanogaster/genética , Evolución Molecular , Análisis de Secuencia de ADN/métodos , Telómero/química , Cromosoma Y/química , Animales , Cromosomas Artificiales Bacterianos , Clonación Molecular , ADN/química , Elementos Transponibles de ADN , Secuencias Repetitivas de Ácidos Nucleicos
5.
Genetics ; 176(2): 1343-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17409066

RESUMEN

Here we show that RNA interference (RNAi) machinery operates in Drosophila melanogaster 1.688 satellite transcription. Mutation in the spn-E gene, known to be involved in RNAi in the oocytes, causes an increase of satellite transcript abundance. Transcripts of both strands of 1.688 satellite repeats in germinal tissues were detected. The strength of the effects of the spn-E mutation differs for 1.688 satellite DNA subfamilies and is more pronounced for autosomal pericentromeric satellites compared to the X-linked centromeric ones. The spn-E(1) mutation causes an increase of the H3-AcK9 mark and TAF1 (a component of the polymerase II transcriptional complex) occupancy in the chromatin of autosomal pericentromeric repeats. Thus, we revealed that RNAi operates in ovaries to maintain the silenced state of centromeric and pericentromeric 1.688 repeats.


Asunto(s)
ADN Satélite/genética , Drosophila melanogaster/genética , Ovario/fisiología , Interferencia de ARN/fisiología , Transcripción Genética , Animales , Cromatina/genética , Cromatina/ultraestructura , Clonación Molecular , Cartilla de ADN , Femenino , Mutación , Oocitos/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Cell Cycle ; 7(14): 2134-8, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18635962

RESUMEN

The maintenance of terminal sequences is an important role of the telomere, since it prevents the loss of internal regions that encode essential genes. In most eukaryotes, this is accomplished by the telomerase. However, telomere length can also be maintained by other mechanisms, such as homologous recombination and transposition of telomeric retrotransposons to the chromosome ends. A remarkable situation is the case of Drosophila, where telomerase was lost, and thus telomeres managed to be maintained by occasional retrotransposition of telomeric elements to the receding ends. In the recent analysis of 12 Drosophila genomes, the multiplicity of autonomous and non-autonomous telomere-specific retrotransposons has revealed extensive and rapid evolution of telomeric DNA. The phylogenetic relationship among these telomeric retrotransposons is congruent with the species phylogeny, suggesting that they have been vertically transmitted from a common ancestor. In this review, we also suggest that the formation of a non-canonical DNA structure at Drosophila telomeres could be the way to protect the ends.


Asunto(s)
Drosophila/metabolismo , Evolución Molecular , Retroelementos/genética , Telómero/genética , Telómero/metabolismo , Animales
7.
Genome Res ; 17(12): 1909-18, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17989257

RESUMEN

Drosophila telomeres do not have arrays of simple telomerase-generated G-rich repeats. Instead, Drosophila maintains its telomeres by occasional transposition of specific non-long terminal repeat (non-LTR) retrotransposons to chromosome ends. The genus Drosophila provides a superb model system for comparative telomere analysis. Here we present an evolutionary study of Drosophila telomeric elements to ascertain the significance of telomeric retrotransposons (TRs) in the maintenance of Drosophila telomeres. PCR and in silico surveys in the sibling species of Drosophila melanogaster and in more distantly related species show that multiple TRs maintain telomeres in Drosophila. In addition to TRs with two open reading frames (ORFs) capable of autonomous transposition, there are deleted telomeric retrotransposons that have lost their ORF2, which we refer to as half telomeric-retrotransposons (HTRs). The phylogenetic relationship among these telomeric elements is congruent with the phylogeny of the species, suggesting that they have been vertically inherited from a common ancestor. Our results suggest that an existing non-LTR retrotransposon was recruited to perform the cellular function of telomere maintenance.


Asunto(s)
Drosophila/genética , Evolución Molecular , Retroelementos/genética , Telomerasa/genética , Telómero/genética , Animales , Drosophila/enzimología , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Genoma , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie , Telómero/enzimología
8.
Genomics ; 89(2): 291-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17098394

RESUMEN

BAC libraries generated from restriction-digested genomic DNA display representational bias and lack some sequences. To facilitate completion of genome projects, procedures have been developed to create BACs from DNA physically sheared to create fragments extending up to 200 kb. The DNA fragments were repaired to create blunt ends and ligated to a new BAC vector. This approach has been tested by generating BAC libraries from Drosophila DNA with insert lengths between 50 and 150 kb. The libraries lack chimeric clone problems as determined by mapping paired BAC-end sequences to the assembled fly genome sequence. The utility of "sheared" libraries was demonstrated by closure of a previous clone gap and by isolation of clones from telomeric regions, which were notably absent from previous Drosophila BAC libraries.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , ADN/genética , ADN/aislamiento & purificación , Biblioteca de Genes , Animales , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Drosophila melanogaster/genética , Genes de Insecto , Vectores Genéticos
9.
Chromosoma ; 113(6): 295-304, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15616866

RESUMEN

The genomic analysis of heterochromatin is essential for studying chromosome behavior as well as for understanding chromosome evolution. The Y chromosome of Drosophila melanogaster is entirely heterochromatic and the under-representation of this chromosome in genomic libraries together with the difficulty of assembling its sequence has made its study very difficult. Here, we present the construction of bacterial artificial chromosome (BAC) contigs from regions h14, h16 and the centromeric region h18. The analysis of these contigs shows that telomere-derived sequences are present at internal regions. In addition, immunostaining of prometaphase chromosomes with an antibody to the kinetochore-specific protein BubR1 has revealed the presence of this protein in some Y chromosome regions rich in telomere-related sequences. Collectively, our data provide further evidence for the hypothesis that the Drosophila Y chromosomes might have evolved from supernumerary chromosomes.


Asunto(s)
Drosophila melanogaster/genética , Heterocromatina/genética , Telómero/genética , Cromosoma Y/genética , Animales , Anticuerpos/inmunología , Secuencia de Bases , Proteínas de Ciclo Celular , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales de Levadura/genética , Mapeo Contig , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Productos del Gen gag/fisiología , Genómica , Hibridación Fluorescente in Situ , Masculino , Datos de Secuencia Molecular , Proteínas Quinasas/análisis , Proteínas Quinasas/inmunología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Cromosoma Y/química , Cromosoma Y/metabolismo
10.
Mol Biol Evol ; 21(9): 1613-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15163766

RESUMEN

The repetitive nature of heterochromatin hampers its analysis in general genome-sequencing projects. Specific studies are needed to extend the sequence into telomeric and centromeric heterochromatin. Drosophila telomeres lack the telomerase-generated repeats that are characteristic of other eukaryotic chromosomes. Instead, they consist of tandem arrays of HeT-A and TART elements. Herein, we present the genomic organization of the telomeres in the isogenic strain (y; cn bw sp) that was used for the Drosophila melanogaster sequencing project. The data indicate that the canonical features of telomere organization are widely conserved in evolution. In addition, we have identified full-length elements, likely competent elements, for HeT-A and TART.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Productos del Gen gag/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Evolución Molecular , Genes de Insecto , Genoma , Heterocromatina/genética , Modelos Genéticos , Datos de Secuencia Molecular , Retroelementos/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Telómero/genética
11.
Mol Biol Evol ; 21(9): 1620-4, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15175413

RESUMEN

Drosophila telomeres do not have typical telomerase repeats. Instead, two families of non-LTR retrotransposons, HeT-A and TART, maintain telomere length by occasional transposition to the chromosome ends. Despite the work on Drosophila telomeres, its evolutionary origin remains controversial. Herein we describe a novel telomere-specific retroelement that we name TAHRE (Telomere-Associated and HeT-A-Related Element). The structure of the three telomere-specific elements indicates a common ancestor. These results suggest that preexisting transposable elements were recruited to perform the cellular function of telomere maintenance. A recruitment similar to that of a retrotransposal reverse transcriptase has been suggested as the common origin of telomerases.


Asunto(s)
Drosophila melanogaster/genética , Retroelementos/genética , Telómero/genética , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Evolución Molecular , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia
12.
EMBO Rep ; 3(1): 34-8, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11751581

RESUMEN

The Drosophila melanogaster genome consists of four chromosomes that contain 165 Mb of DNA, 120 Mb of which are euchromatic. The two Drosophila Genome Projects, in collaboration with Celera Genomics Systems, have sequenced the genome, complementing the previously established physical and genetic maps. In addition, the Berkeley Drosophila Genome Project has undertaken large-scale functional analysis based on mutagenesis by transposable P element insertions into autosomes. Here, we present a large-scale P element insertion screen for vital gene functions and a BAC tiling map for the X chromosome. A collection of 501 X-chromosomal P element insertion lines was used to map essential genes cytogenetically and to establish short sequence tags (STSs) linking the insertion sites to the genome. The distribution of the P element integration sites, the identified genes and transcription units as well as the expression patterns of the P-element-tagged enhancers is described and discussed.


Asunto(s)
Mapeo Cromosómico , Drosophila melanogaster/genética , Cromosoma X , Animales , Cromosomas Artificiales Bacterianos , Mapeo Contig , Sondas de ADN , Elementos Transponibles de ADN , Femenino , Genes Esenciales , Genes de Insecto , Masculino , Mutagénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA