Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 28(64): e202201984, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973964

RESUMEN

Methane (CH4 ) is a potent greenhouse gas and the second highest contributor to global warming. CH4 emissions are still growing at an alarmingly high pace. To limit global warming to 1.5 °C, one of the most effective strategies is to reduce rapidly the CH4 emissions by developing large-scale methane removal methods. The purpose of this perspective paper is threefold. (1) To highlight the technology gap dealing with low concentration CH4 (at many emission sources and in the atmosphere). (2) To analyze the challenges and prospects of solar-driven gas phase advanced oxidation processes for CH4 removal. And (3) to propose some ideas, which may help to develop solar-driven gas phase advanced oxidation processes and make them deployable at a climate significant scale.

2.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200454, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34565221

RESUMEN

Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

3.
Front Chem ; 9: 745347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568287

RESUMEN

Due to the alarming speed of global warming, greenhouse gas removal from atmosphere will be absolutely necessary in the coming decades. Methane is the second most harmful greenhouse gas in the atmosphere. There is an emerging technology proposed to incorporating photocatalysis with solar updraft Towers (SUT) to remove methane from the air at a planetary scale. In this study, we present a deep analysis by calculating the potential of methane removal in relation to the dimensions and configuration of SUT using different photocatalysts. The analysis shows that the methane removal rate increases with the SUT dimensions and can be enhanced by changing the configuration design. More importantly, the low methane removal rate on conventional TiO2 photocatalyst can be significantly improved to, for example, 42.5% on a more effective Ag-doped ZnO photocatalyst in a 200 MW SUT while the photocatalytic reaction is the rate limiting step. The factors that may further affect the removal of methane, such as more efficient photocatalysts, night operation and reaction zone are discussed as possible solutions to further improve the system.

4.
Environ Sci Pollut Res Int ; 23(7): 6119-38, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26805926

RESUMEN

Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.


Asunto(s)
Contaminación del Aire/prevención & control , Secuestro de Carbono , Conservación de los Recursos Naturales/métodos , Calentamiento Global , Efecto Invernadero/prevención & control , Óxido Nitroso/análisis , Dióxido de Carbono/análisis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA