Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Purinergic Signal ; 16(2): 241-249, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32458299

RESUMEN

In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001-1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 µM) and soluble guanylate cyclase (ODQ, 10 µM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 µM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.


Asunto(s)
GMP Cíclico/metabolismo , Guanosina/farmacología , Nucleósidos/metabolismo , Animales , AMP Cíclico/metabolismo , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/metabolismo , Guanosina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Nucleósidos/efectos de los fármacos
2.
Gene ; 906: 148236, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316264

RESUMEN

This systematic review and meta-analysis aimed to verify the association between single-nucleotide polymorphisms (SNPs) in vitamin D-related genes and the severity or mortality of coronavirus disease 19 (COVID-19). We systematically searched PubMed, BVS/Bireme, Scopus, Embase, and Web of Science for relevant studies published until November 24, 2023. Twelve studies were included. Thirty-one SNPs related to four genes were studied (VDR, 13 SNPs; GC, 6 SNPs; DHCR7/NADSYN1, 6 SNPs; CYP2R1, 6 SNPs). Eight SNPs were examined in two or more studies (VDR rs731236, rs2228570, rs1544410, rs7975232, rs739837, rs757343, rs11568820, and rs4516035). Meta-analysis showed a significant association between the VDR rs1544410 Bb + bb genotype and b allele and an increased odds of developing severe/critical COVID-19 (Bb + bb vs. BB = 2 studies, OR = 1.73, 95% confidence interval (CI): 1.16-2.57, P = 0.007, I2 = 0%; b allele vs. B allele = 2 studies, OR = 1.31, 95% CI: 1.03-1.67; P = 0.03; I2 = 0%). Regarding the mortality rate, VDR rs731236 TT-genotype, TT + Tt genotype, and T allele; VDR rs1544410 bb-genotype, Bb + bb genotype, and b allele; VDR rs7975232 AA-genotype, AA + Aa genotype, and A allele; and VDR rs2228570 ff-genotype, Ff + ff genotype, and f allele were associated with increased odds of death due to COVID-19. In conclusion, the present study suggests that SNPs rs1544410 may serve as a predictive biomarker for COVID-19 severity and rs731236, rs1544410, rs7975232, and rs2228570 as predictive biomarkers for COVID-19 mortality. More well-designed studies involving a larger number of COVID-19 patients are required to validate and replicate these findings.


Asunto(s)
COVID-19 , Polimorfismo de Nucleótido Simple , Humanos , Predisposición Genética a la Enfermedad , Receptores de Calcitriol/genética , COVID-19/genética , Genotipo , Vitamina D/genética
3.
Sci Rep ; 14(1): 13702, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871789

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recent research has demonstrated how epigenetic mechanisms regulate the host-virus interactions in COVID-19. It has also shown that microRNAs (miRNAs) are one of the three fundamental mechanisms of the epigenetic regulation of gene expression and play an important role in viral infections. A pilot study published by our research group identified, through next-generation sequencing (NGS), that miR-4433b-5p, miR-320b, and miR-16-2-3p are differentially expressed between patients with COVID-19 and controls. Thus, the objectives of this study were to validate the expression of these miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR) and to perform in silico analyses. Patients with COVID-19 (n = 90) and healthy volunteers (n = 40) were recruited. MiRNAs were extracted from plasma samples and validated using qRT-PCR. In addition, in silico analyses were performed using mirPath v.3 software. MiR-320b was the only miRNA upregulated in the case group com-pared to the control group. The in silico analyses indicated the role of miR-320b in the regulation of the KITLG gene and consequently in the inflammatory process. This study confirmed that miR-320b can distinguish patients with COVID-19 from control participants; however, further research is needed to determine whether this miRNA can be used as a target or a biomarker.


Asunto(s)
COVID-19 , MicroARNs , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/sangre , COVID-19/virología , MicroARNs/sangre , MicroARNs/genética , Masculino , Femenino , SARS-CoV-2/genética , Persona de Mediana Edad , Adulto , Anciano , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA