Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(5): 791-808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38348881

RESUMEN

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.


Asunto(s)
Miocitos Cardíacos , Optogenética , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Membrana Celular , Potenciales de la Membrana , Potenciales de Acción/fisiología
2.
J Intern Med ; 295(2): 126-145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964404

RESUMEN

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/tratamiento farmacológico , Cardioversión Eléctrica , Calidad de Vida , Corazón
3.
Circ Res ; 131(1): 24-41, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35587025

RESUMEN

BACKGROUND: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. METHODS: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. RESULTS: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified ≈13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). CONCLUSIONS: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.


Asunto(s)
Miocitos Cardíacos , Sarcómeros , Animales , Diferenciación Celular , Atrios Cardíacos , Miocardio , Miocitos Cardíacos/metabolismo , Ratas , Sarcómeros/metabolismo
4.
J Mol Cell Cardiol ; 178: 9-21, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965700

RESUMEN

AIMS: The most efficient way to acutely restore sinus rhythm from atrial fibrillation (AF) is electrical cardioversion, which is painful without adequate sedation. Recent studies in various experimental models have indicated that optogenetic termination of AF using light-gated ion channels may provide a myocardium-specific and potentially painless alternative future therapy. However, its underlying mechanism(s) remain(s) incompletely understood. As brief pulsed light stimulation, even without global illumination, can achieve optogenetic AF termination, besides direct conduction block also modulation of action potential (AP) properties may be involved in the termination mechanism. We studied the relationship between optogenetic AP duration (APD) and effective refractory period (ERP) prolongation by brief pulsed light stimulation and termination of atrial tachyarrhythmia (AT). METHODS AND RESULTS: Hearts from transgenic mice expressing the H134R variant of channelrhodopsin-2 in atrial myocytes were explanted and perfused retrogradely. AT induced by electrical stimulation was terminated by brief pulsed blue light stimulation (470 nm, 10 ms, 16 mW/mm2) with 68% efficacy. The termination rate was dependent on pulse duration and light intensity. Optogenetically imposed APD and ERP changes were systematically examined and optically monitored. Brief pulsed light stimulation (10 ms, 6 mW/mm2) consistently prolonged APD and ERP when light was applied at different phases of the cardiac action potential. Optical tracing showed light-induced APD prolongation during the termination of AT. CONCLUSION: Our results directly demonstrate that cationic channelrhodopsin activation by brief pulsed light stimulation prolongs the atrial refractory period suggesting that this is one of the key mechanisms of optogenetic termination of AT.


Asunto(s)
Fibrilación Atrial , Animales , Ratones , Fibrilación Atrial/terapia , Optogenética/métodos , Channelrhodopsins/genética , Atrios Cardíacos , Taquicardia , Ratones Transgénicos , Potenciales de Acción
5.
J Intern Med ; 294(3): 347-357, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340835

RESUMEN

BACKGROUND: Optogenetics could offer a solution to the current lack of an ambulatory method for the rapid automated cardioversion of atrial fibrillation (AF), but key translational aspects remain to be studied. OBJECTIVE: To investigate whether optogenetic cardioversion of AF is effective in the aged heart and whether sufficient light penetrates the human atrial wall. METHODS: Atria of adult and aged rats were optogenetically modified to express light-gated ion channels (i.e., red-activatable channelrhodopsin), followed by AF induction and atrial illumination to determine the effectivity of optogenetic cardioversion. The irradiance level was determined by light transmittance measurements on human atrial tissue. RESULTS: AF could be effectively terminated in the remodeled atria of aged rats (97%, n = 6). Subsequently, ex vivo experiments using human atrial auricles demonstrated that 565-nm light pulses at an intensity of 25 mW/mm2 achieved the complete penetration of the atrial wall. Applying such irradiation onto the chest of adult rats resulted in transthoracic atrial illumination as evidenced by the optogenetic cardioversion of AF (90%, n = 4). CONCLUSION: Transthoracic optogenetic cardioversion of AF is effective in the aged rat heart using irradiation levels compatible with human atrial transmural light penetration.


Asunto(s)
Fibrilación Atrial , Adulto , Humanos , Animales , Ratas , Fibrilación Atrial/terapia , Optogenética/métodos , Cardioversión Eléctrica , Iluminación , Atrios Cardíacos/efectos de la radiación
6.
Circ Res ; 127(2): 229-243, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32248749

RESUMEN

RATIONALE: Genome-wide association studies have identified a large number of common variants (single-nucleotide polymorphisms) associated with atrial fibrillation (AF). These variants are located mainly in noncoding regions of the genome and likely include variants that modulate the function of transcriptional regulatory elements (REs) such as enhancers. However, the actual REs modulated by variants and the target genes of such REs remain to be identified. Thus, the biological mechanisms by which genetic variation promotes AF has thus far remained largely unexplored. OBJECTIVE: To identify REs in genome-wide association study loci that are influenced by AF-associated variants. METHODS AND RESULTS: We screened 2.45 Mbp of human genomic DNA containing 12 strongly AF-associated loci for RE activity using self-transcribing active regulatory region sequencing and a recently generated monoclonal line of conditionally immortalized rat atrial myocytes. We identified 444 potential REs, 55 of which contain AF-associated variants (P<10-8). Subsequently, using an adaptation of the self-transcribing active regulatory region sequencing approach, we identified 24 variant REs with allele-specific regulatory activity. By mining available chromatin conformation data, the possible target genes of these REs were mapped. To define the physiological function and target genes of such REs, we deleted the orthologue of an RE containing noncoding variants in the Hcn4 (potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4) locus of the mouse genome. Mice heterozygous for the RE deletion showed bradycardia, sinus node dysfunction, and selective loss of Hcn4 expression. CONCLUSIONS: We have identified REs at multiple genetic loci for AF and found that loss of an RE at the HCN4 locus results in sinus node dysfunction and reduced gene expression. Our approach can be broadly applied to facilitate the identification of human disease-relevant REs and target genes at cardiovascular genome-wide association studies loci.


Asunto(s)
Fibrilación Atrial/genética , Elementos de Facilitación Genéticos , Animales , Fibrilación Atrial/metabolismo , Sitios Genéticos , Genoma Humano , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo
7.
J Biol Chem ; 294(18): 7202-7218, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30737279

RESUMEN

Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.


Asunto(s)
Miocardio/metabolismo , Miosinas/metabolismo , Sarcómeros/metabolismo , Animales , Eliminación de Gen , Genes Letales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Noqueados , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
FASEB J ; 33(9): 10453-10468, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253057

RESUMEN

Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.


Asunto(s)
Adhesión Celular , Comunicación Celular , Movimiento Celular , Conexina 43/metabolismo , Miocitos Cardíacos/fisiología , Miofibroblastos/fisiología , Animales , Antineoplásicos/farmacología , Células Cultivadas , Uniones Comunicantes , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/efectos de los fármacos , Fenilbutiratos/farmacología , Ratas , Ratas Sprague-Dawley
9.
BMC Med Genet ; 20(1): 117, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31262253

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) are attractive choices in regenerative medicine and can be genetically modified to obtain better results in therapeutics. Bone development and metabolism are controlled by various factors including microRNAs (miRs) interference, which are small non-coding endogenous RNAs. METHODS: In the current study, the effects of forced miR-148b expression was evaluated on osteogenic activity. Human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transduced with bicistronic lentiviral vector encoding hsa-miR-148b-3p or -5p and the enhanced green fluorescent protein. Fourteen days post-transduction, immunostaining as well as Western blotting were used to analyze osteogenesis. RESULTS: Overexpression of miR-148b-3p increased the osteogenic differentiation of human BM-MSCs as demonstrated by anenhancement of mineralized nodular formation and an increase in the levels of osteoblastic differentiation biomarkers, alkaline phosphatase and collagen type I. CONCLUSIONS: Since lentivirally overexpressed miR-148b-3p increased osteogenic differentiation capability of BM-MSCs, this miR could be applied as a therapeutic modulator to optimize bone function.


Asunto(s)
Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Fosfatasa Alcalina , Secuencia de Bases , Biomarcadores , Médula Ósea/crecimiento & desarrollo , Médula Ósea/patología , Diferenciación Celular , Colágeno Tipo I , Vectores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Células Madre Mesenquimatosas/citología , Transducción Genética
10.
J Cell Biochem ; 119(7): 6146-6153, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29637615

RESUMEN

Ischemic heart disease often results in myocardial infarction and is the leading cause of mortality and morbidity worldwide. Improvement in the function of infarcted myocardium is a main purpose of cardiac regenerative medicine. One possible way to reach this goal is via stem cell therapy. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types but display limited cardiomyogenic differentiation potential. Members of the T-box family of transcription factors including Tbx20 play important roles in heart development and cardiomyocyte homeostasis. Therefore, in the current study, we investigated the potential of Tbx20 to enhance the cardiomyogenic differentiation of human adipose-derived MSCs (ADMSCs). Human ADMSCs were transduced with a bicistronic lentiviral vector encoding Tbx20 (murine) and the enhanced green fluorescent protein (eGFP) and analyzed 7 and 14 days post transduction. Transduction of human ADMSCs with this lentiviral vector increased the expression of the cardiomyogenic differentiation markers ACTN1, TNNI3, ACTC1, NKX2.5, TBX20 (human), and GATA4 as revealed by RT-qPCR. Consistently, immunocytological results showed elevated expression of α-actinin and cardiac troponin I in these cells in comparison to the cells transduced with control lentiviral particles coding for eGFP alone. Accordingly, forced expression of Tbx20 exerts cardiomyogenic effects on human ADMSCs by increasing the expression of cardiomyogenic differentiation markers at the RNA and protein level.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular , Vectores Genéticos/administración & dosificación , Lentinula/genética , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Proteínas de Dominio T Box/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética
11.
Eur Heart J ; 38(27): 2132-2136, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28011703

RESUMEN

AIMS: Current treatments of ventricular arrhythmias rely on modulation of cardiac electrical function through drugs, ablation or electroshocks, which are all non-biological and rather unspecific, irreversible or traumatizing interventions. Optogenetics, however, is a novel, biological technique allowing electrical modulation in a specific, reversible and trauma-free manner using light-gated ion channels. The aim of our study was to investigate optogenetic termination of ventricular arrhythmias in the whole heart. METHODS AND RESULTS: Systemic delivery of cardiotropic adeno-associated virus vectors, encoding the light-gated depolarizing ion channel red-activatable channelrhodopsin (ReaChR), resulted in global cardiomyocyte-restricted transgene expression in adult Wistar rat hearts allowing ReaChR-mediated depolarization and pacing. Next, ventricular tachyarrhythmias (VTs) were induced in the optogenetically modified hearts by burst pacing in a Langendorff setup, followed by programmed, local epicardial illumination. A single 470-nm light pulse (1000 ms, 2.97 mW/mm2) terminated 97% of monomorphic and 57% of polymorphic VTs vs. 0% without illumination, as assessed by electrocardiogram recordings. Optical mapping showed significant prolongation of voltage signals just before arrhythmia termination. Pharmacological action potential duration (APD) shortening almost fully inhibited light-induced arrhythmia termination indicating an important role for APD in this process. CONCLUSION: Brief local epicardial illumination of the optogenetically modified adult rat heart allows contact- and shock-free termination of ventricular arrhythmias in an effective and repetitive manner after optogenetic modification. These findings could lay the basis for the development of fundamentally new and biological options for cardiac arrhythmia management.


Asunto(s)
Arritmias Cardíacas/terapia , Channelrhodopsins/farmacología , Optogenética/métodos , Fototerapia/métodos , Adenoviridae , Animales , Channelrhodopsins/administración & dosificación , Terapia Genética/métodos , Vectores Genéticos , Activación del Canal Iónico/efectos de la radiación , Luz , Miocitos Cardíacos/fisiología , Ratas Wistar , Taquicardia Ventricular/terapia , Transgenes/fisiología
12.
Stem Cells ; 32(6): 1493-502, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24496962

RESUMEN

A thorough understanding of the developmental signals that direct pluripotent stem cells (PSCs) toward a cardiac fate is essential for translational applications in disease modeling and therapy. We screened a panel of 44 cytokines/signaling molecules for their ability to enhance Nkx2.5(+) cardiac progenitor cell (CPC) formation during in vitro embryonic stem cell (ESC) differentiation. Treatment of murine ESCs with insulin or insulin-like growth factors (IGF1/2) during early differentiation increased mesodermal cell proliferation and, consequently, CPC formation. Furthermore, we show that downstream mediators of IGF signaling (e.g., phospho-Akt and mTOR) are required for this effect. These data support a novel role for IGF family ligands to expand the developing mesoderm and promote cardiac differentiation. Insulin or IGF treatment could provide an effective strategy to increase the PSC-based generation of CPCs and cardiomyocytes for applications in regenerative medicine.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Factor II del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Mesodermo/citología , Miocardio/citología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Insulina , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Circ Res ; 113(9): 1065-75, 2013 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23963726

RESUMEN

RATIONALE: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE: We sought to determine the role of QKI in regulating adult VSMC function and plasticity. METHODS AND RESULTS: We identified that QKI is highly expressed by neointimal VSMCs of human coronary restenotic lesions, but not in healthy vessels. In a mouse model of vascular injury, we observed reduced neointima hyperplasia in Quaking viable mice, which have decreased QKI expression. Concordantly, abrogation of QKI attenuated fibroproliferative properties of VSMCs, while potently inducing contractile apparatus protein expression, rendering noncontractile VSMCs with the capacity to contract. We identified that QKI localizes to the spliceosome, where it interacts with the myocardin pre-mRNA and regulates the splicing of alternative exon 2a. This post-transcriptional event impacts the Myocd_v3/Myocd_v1 mRNA balance and can be modulated by mutating the quaking response element in exon 2a of myocardin. Furthermore, we identified that arterial damage triggers myocardin alternative splicing and is tightly coupled with changes in the expression levels of distinct QKI isoforms. CONCLUSIONS: We propose that QKI is a central regulator of VSMC phenotypic plasticity and that intervention in QKI activity can ameliorate pathogenic, fibroproliferative responses to vascular injury.


Asunto(s)
Proliferación Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Traumatismos de las Arterias Carótidas/metabolismo , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Movimiento Celular , Reestenosis Coronaria/metabolismo , Reestenosis Coronaria/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hiperplasia , Ratones , Ratones Endogámicos C57BL , Ratones Quaking , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Transactivadores/genética , Transactivadores/metabolismo , Transfección
14.
J Am Soc Nephrol ; 25(8): 1710-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24610930

RESUMEN

Ischemia/reperfusion injury (IRI) is a central phenomenon in kidney transplantation and AKI. Integrity of the renal peritubular capillary network is an important limiting factor in the recovery from IRI. MicroRNA-126 (miR-126) facilitates vascular regeneration by functioning as an angiomiR and by modulating mobilization of hematopoietic stem/progenitor cells. We hypothesized that overexpression of miR-126 in the hematopoietic compartment could protect the kidney against IRI via preservation of microvascular integrity. Here, we demonstrate that hematopoietic overexpression of miR-126 increases neovascularization of subcutaneously implanted Matrigel plugs in mice. After renal IRI, mice overexpressing miR-126 displayed a marked decrease in urea levels, weight loss, fibrotic markers, and injury markers (such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin). This protective effect was associated with a higher density of the peritubular capillary network in the corticomedullary junction and increased numbers of bone marrow-derived endothelial cells. Hematopoietic overexpression of miR-126 increased the number of circulating Lin(-)/Sca-1(+)/cKit(+) hematopoietic stem and progenitor cells. Additionally, miR-126 overexpression attenuated expression of the chemokine receptor CXCR4 on Lin(-)/Sca-1(+)/cKit(+) cells in the bone marrow and increased renal expression of its ligand stromal cell-derived factor 1, thus favoring mobilization of Lin(-)/Sca-1(+)/cKit(+) cells toward the kidney. Taken together, these results suggest overexpression of miR-126 in the hematopoietic compartment is associated with stromal cell-derived factor 1/CXCR4-dependent vasculogenic progenitor cell mobilization and promotes vascular integrity and supports recovery of the kidney after IRI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Células Madre Hematopoyéticas/fisiología , Riñón/irrigación sanguínea , MicroARNs/fisiología , Neovascularización Fisiológica/fisiología , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Receptores CXCR4/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
15.
Circulation ; 128(25): 2732-44, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24065610

RESUMEN

BACKGROUND: Atrial fibrillation is the most common cardiac arrhythmia. Ventricular proarrhythmia hinders pharmacological atrial fibrillation treatment. Modulation of atrium-specific Kir3.x channels, which generate a constitutively active current (I(K,ACh-c)) after atrial remodeling, might circumvent this problem. However, it is unknown whether and how I(K,ACh-c) contributes to atrial fibrillation induction, dynamics, and termination. Therefore, we investigated the effects of I(K,ACh-c) blockade and Kir3.x downregulation on atrial fibrillation. METHODS AND RESULTS: Neonatal rat atrial cardiomyocyte cultures and intact atria were burst paced to induce reentry. To study the effects of Kir3.x on action potential characteristics and propagation patterns, cultures were treated with tertiapin or transduced with lentiviral vectors encoding Kcnj3- or Kcnj5-specific shRNAs. Kir3.1 and Kir3.4 were expressed in atrial but not in ventricular cardiomyocyte cultures. Tertiapin prolonged action potential duration (APD; 54.7±24.0 to 128.8±16.9 milliseconds; P<0.0001) in atrial cultures during reentry, indicating the presence of I(K,ACh-c). Furthermore, tertiapin decreased rotor frequency (14.4±7.4 to 6.6±2.0 Hz; P<0.05) and complexity (6.6±7.7 to 0.6±0.8 phase singularities; P<0.0001). Knockdown of Kcnj3 or Kcnj5 gave similar results. Blockade of I(K,ACh-c) prevented/terminated reentry by prolonging APD and changing APD and conduction velocity restitution slopes, thereby altering the probability of APD alternans and rotor destabilization. Whole-heart mapping experiments confirmed key findings (e.g., >50% reduction in atrial fibrillation inducibility after I(K,ACh-c) blockade). CONCLUSIONS: Atrium-specific Kir3.x controls the induction, dynamics, and termination of fibrillation by modulating APD and APD/conduction velocity restitution slopes in atrial tissue with I(K,ACh-c). This study provides new molecular and mechanistic insights into atrial tachyarrhythmias and identifies Kir3.x as a promising atrium-specific target for antiarrhythmic strategies.


Asunto(s)
Fibrilación Atrial/fisiopatología , Regulación hacia Abajo/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Atrios Cardíacos/fisiopatología , Miocitos Cardíacos/fisiología , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Venenos de Abeja/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje
16.
Nucleic Acids Res ; 40(5): 1984-99, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22080552

RESUMEN

DNA repeats constitute potential sites for the nucleation of secondary structures such as hairpins and cruciforms. Studies performed mostly in bacteria and yeast showed that these noncanonical DNA structures are breakage-prone, making them candidate targets for cellular DNA repair pathways. Possible culprits for fragility at repetitive DNA sequences include replication and transcription as well as the action of structure-specific nucleases. Despite their patent biological relevance, the parameters governing DNA repeat-associated chromosomal transactions remain ill-defined. Here, we established an episomal recombination system based on donor and acceptor complementary DNA templates to investigate the role of direct and inverted DNA repeats in homologous recombination (HR) in mammalian cells. This system allowed us also to ascertain in a stringent manner the impact of repetitive sequence replication on homology-directed gene repair. We found that nonspaced DNA repeats can, per se, engage the HR pathway of the cell and that this process is primarily dependent on their spacing and relative arrangement (i.e. parallel or antiparallel) rather than on their sequence. Indeed, our data demonstrate that contrary to direct and spaced inverted repeats, nonspaced inverted repeats are intrinsically recombinogenic motifs in mammalian cells lending experimental support to their role in genome dynamics in higher eukaryotes.


Asunto(s)
ADN/química , Secuencias Invertidas Repetidas , Reparación del ADN por Recombinación , Animales , Secuencia de Bases , Células COS , Línea Celular , Chlorocebus aethiops , ADN Cruciforme/química , Desoxirribonucleasas/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Plásmidos/genética
17.
Nucleic Acids Res ; 40(8): 3443-55, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22189101

RESUMEN

The exchange of genetic information between donor and acceptor DNA molecules by homologous recombination (HR) depends on the cleavage of phosphodiester bonds. Although double-stranded and single-stranded DNA breaks (SSBs) have both been invoked as triggers of HR, until very recently the focus has been primarily on the former type of DNA lesions mainly due to the paucity of SSB-based recombination models. Here, to investigate the role of nicked DNA molecules as HR-initiating substrates in human somatic cells, we devised a homology-directed gene targeting system based on exogenous donor and chromosomal target DNA containing recognition sequences for the adeno-associated virus sequence- and strand-specific endonucleases Rep78 and Rep68. We found that HR is greatly fostered if a SSB is not only introduced in the chromosomal acceptor but also in the donor DNA template. Our data are consistent with HR models postulating the occurrence of SSBs or single-stranded gaps in both donor and acceptor molecules during the genetic exchange process. These findings can guide the development of improved HR-based genome editing strategies in which sequence- and strand-specific endonucleolytic cleavage of the chromosomal target site is combined with that of the targeting vector.


Asunto(s)
Roturas del ADN de Cadena Simple , Marcación de Gen , Recombinación Homóloga , Línea Celular , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Sitios Genéticos , Humanos
19.
Comput Biol Med ; 169: 107949, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199206

RESUMEN

Excitable systems give rise to important phenomena such as heat waves, epidemics and cardiac arrhythmias. Understanding, forecasting and controlling such systems requires reliable mathematical representations. For cardiac tissue, computational models are commonly generated in a reaction-diffusion framework based on detailed measurements of ionic currents in dedicated single-cell experiments. Here, we show that recorded movies at the tissue-level of stochastic pacing in a single variable are sufficient to generate a mathematical model. Via exponentially weighed moving averages, we create additional state variables, and use simple polynomial regression in the augmented state space to quantify excitation wave dynamics. A spatial gradient-sensing term replaces the classical diffusion as it is more robust to noise. Our pipeline for model creation is demonstrated for an in-silico model and optical voltage mapping recordings of cultured human atrial myocytes and only takes a few minutes. Our findings have the potential for widespread generation, use and on-the-fly refinement of personalised computer models for non-linear phenomena in biology and medicine, such as predictive cardiac digital twins.


Asunto(s)
Arritmias Cardíacas , Medicina , Humanos , Miocitos Cardíacos/fisiología , Modelos Cardiovasculares , Simulación por Computador
20.
Cardiovasc Res ; 120(3): 249-261, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38048392

RESUMEN

AIMS: Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS: To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS: Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.


Asunto(s)
Fibrilación Atrial , Humanos , Atrios Cardíacos , Canales Iónicos , Taquicardia/patología , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA