RESUMEN
OBJECTIVE: Quantitative extracellular volume fraction (ECV) mapping with MRI is commonly used to investigate in vivo diffuse myocardial fibrosis. This study aimed to validate ECV measurements against ex vivo histology of myocardial tissue samples from patients with aortic valve stenosis or hypertrophic cardiomyopathy. MATERIALS AND METHODS: Sixteen patients underwent MRI examination at 3 T to acquire native T1 maps and post-contrast T1 maps after gadobutrol administration, from which hematocrit-corrected ECV maps were estimated. Intra-operatively obtained myocardial tissue samples from the same patients were stained with picrosirius red for quantitative histology of myocardial interstitial fibrosis. Correlations between in vivo ECV and ex vivo myocardial collagen content were evaluated with regression analyses. RESULTS: Septal ECV was 30.3% ± 4.6% and correlated strongly (n = 16, r = 0.70; p = 0.003) with myocardial collagen content. Myocardial native T1 values (1206 ± 36 ms) did not correlate with septal ECV (r = 0.41; p = 0.111) or with myocardial collagen content (r = 0.32; p = 0.227). DISCUSSION: We compared myocardial ECV mapping at 3 T against ex vivo histology of myocardial collagen content, adding evidence to the notion that ECV mapping is a surrogate marker for in vivo diffuse myocardial fibrosis.
Asunto(s)
Estenosis de la Válvula Aórtica , Cardiomiopatías , Cardiomiopatía Hipertrófica , Humanos , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Biopsia , Reproducibilidad de los Resultados , Miocardio/patología , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/patología , Imagen por Resonancia Magnética , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/patología , Colágeno , Fibrosis , Espectroscopía de Resonancia Magnética , Medios de ContrasteRESUMEN
Long-QT syndrome type 1 (LQT1) is caused by mutations in KCNQ1. Patients heterozygous for such a mutation co-assemble both mutant and wild-type KCNQ1-encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant KCNQ1 by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in KCNQ1, with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant KCNQ1 allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant KCNQ1 allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant KCNQ1 allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.
Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de Romano-Ward , Adulto , Alelos , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , ARN Interferente Pequeño , Síndrome de Romano-Ward/genética , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Proton magnetic resonance spectroscopy (1 H-MRS) of the human heart is deemed to be a quantitative method to investigate myocardial metabolite content, but thorough validations of in vivo measurements against invasive techniques are lacking. PURPOSE: To determine measurement precision and accuracy for quantifications of myocardial total creatine and triglyceride content with localized 1 H-MRS. STUDY TYPE: Test-retest repeatability and measurement validation study. SUBJECTS: Sixteen volunteers and 22 patients scheduled for open-heart aortic valve replacement or septal myectomy. FIELD STRENGTH/SEQUENCE: Prospectively ECG-triggered respiratory-gated free-breathing single-voxel point-resolved spectroscopy (PRESS) sequence at 3 T. ASSESSMENT: Myocardial total creatine and triglyceride content were quantified relative to the total water content by fitting the 1 H-MR spectra. Precision was assessed with measurement repeatability. Accuracy was assessed by validating in vivo 1 H-MRS measurements against biochemical assays in myocardial tissue from the same subjects. STATISTICAL TESTS: Intrasession and intersession repeatability was assessed using Bland-Altman analyses. Agreement between 1 H-MRS measurements and biochemical assay was tested with regression analyses. RESULTS: The intersession repeatability coefficient for myocardial total creatine content was 41.8% with a mean value of 0.083% ± 0.020% of the total water signal, and 36.7% for myocardial triglyceride content with a mean value of 0.35% ± 0.13% of the total water signal. Ex vivo myocardial total creatine concentrations in tissue samples correlated with the in vivo myocardial total creatine content measured with 1 H-MRS: n = 22, r = 0.44; P < 0.05. Likewise, ex vivo myocardial triglyceride concentrations correlated with the in vivo myocardial triglyceride content: n = 20, r = 0.50; P < 0.05. DATA CONCLUSION: We validated the use of localized 1 H-MRS of the human heart at 3 T for quantitative assessments of in vivo myocardial tissue metabolite content by estimating the measurement precision and accuracy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Asunto(s)
Creatina , Miocardio , Corazón/diagnóstico por imagen , Humanos , Espectroscopía de Protones por Resonancia Magnética , TriglicéridosRESUMEN
The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The "nodal" cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with in vivo-like gene expression and electrophysiological profiles. We created the so-called "assembloids" composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the "fast-slow-fast" activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of LMNA-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.