RESUMEN
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Asunto(s)
Mama , Estrógenos , Adolescente , Embarazo , Humanos , Animales , Ratones , Femenino , OrganoidesRESUMEN
The onset of pregnancy marks the start of offspring development, and represents the key physiological event that induces re-organization and specialization of breast tissue. Such drastic tissue remodeling has also been linked to epithelial cell transformation and the establishment of breast cancer (BC). While patient outcomes for BC overall continue to improve across subtypes, prognosis remains dismal for patients with gestational breast cancer (GBC) and post-partum breast cancer (PPBC), as pregnancy and lactation pose additional complications and barriers to several gold standard clinical approaches. Moreover, delayed diagnosis and treatment, coupled with the aggressive time-scale in which GBC metastasizes, inevitably contributes to the higher incidence of disease recurrence and patient mortality. Therefore, there is an urgent and evident need to better understand the factors contributing to the establishment and spreading of BC during pregnancy. In this review, we provide a literature-based overview of the diagnostics and treatments available to patients with BC more broadly, and highlight the treatment deficit patients face due to gestational status. Further, we review the current understanding of the molecular and cellular mechanisms driving GBC, and discuss recent advances in model systems that may support the identification of targetable approaches to block BC development and dissemination during pregnancy. Our goal is to provide an updated perspective on GBC, and to inform critical areas needing further exploration to improve disease outcome.
Asunto(s)
Neoplasias de la Mama , Embarazo , Femenino , Humanos , Neoplasias de la Mama/patología , Periodo Posparto , Pronóstico , Lactancia , Modelos BiológicosRESUMEN
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Animales , Diferenciación Celular , Femenino , HumanosRESUMEN
L-Asparaginase (ASNase) is a biopharmaceutical used as an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Yet, some cases of ALL are naturally resistant to ASNase treatment, which results in poor prognosis. The REH ALL cell line, used as a model for studying the most common subtype of ALL, is considered resistant to treatment with ASNase. Cathepsin B (CTSB) is one of the proteases involved in the regulation of in vivo ASNase serum half-life and it has also been associated with the progression and resistance to treatment of several solid tumors. Previous works have shown that, in vitro, ASNase is degraded when incubated with REH cell lysate, which is prevented by a specific CTSB inhibitor, suggesting a function of this protease in the ASNase resistance of REH cells. In this work, we utilized a combination of CRISPR/Cas9 gene targeting and enzymatic measurements to investigate the relevance of CTSB on ASNase treatment resistance in the ALL model cell line. We found that deletion of CTSB in REH ALL cells did not confer ASNase treatment sensitivity, thus suggesting that intrinsic expression of CTSB is not a mechanism that drives the resistant nature of these ALL cells to enzymes used as the first-line treatment against leukemia.
Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/farmacología , Asparaginasa/metabolismo , Factor Intrinseco/uso terapéutico , Catepsina B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Línea Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
The developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.
Asunto(s)
Células Epiteliales/fisiología , Perfilación de la Expresión Génica/métodos , Glándulas Mamarias Animales/fisiología , Glándulas Mamarias Humanas/fisiología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Linaje de la Célula/fisiología , Células Epiteliales/citología , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
The use of mouse derived mammary organoids can provide a unique strategy to study mammary gland development across a normal life cycle, as well as offering insights into how malignancies form and progress. Substantial cellular and epigenomic changes are triggered in response to pregnancy hormones, a reaction that engages molecular and cellular changes that transform the mammary epithelial cells into "milk producing machines". Such epigenomic alterations remain stable in post-involution mammary epithelial cells and control the reactivation of gene transcription in response to re-exposure to pregnancy hormones. Thus, a system that tightly controls exposure to pregnancy hormones, epigenomic alterations, and activation of transcription will allow for a better understanding of such molecular switches. Here, we describe the characterization of ex vivo cultures to mimic the response of mammary organoid cultures to pregnancy hormones and to understand gene regulation and epigenomic reprogramming on consecutive hormone exposure. Our findings suggest that this system yields similar epigenetic modifications to those reported in vivo, thus representing a suitable model to closely track epigenomic rearrangement and define unknown players of pregnancy-induced development.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Estradiol/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Progesterona/metabolismo , Prolactina/metabolismo , Animales , Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Células Epiteliales/fisiología , Femenino , Código de Histonas , Histonas/genética , Lactancia/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Modelos Animales , Organoides , EmbarazoRESUMEN
Bromodomain and PHD finger containing protein transcription factor (BPTF) is an epigenetic protein involved in chromatin remodelling and is a potential anticancer target. The BPTF bromodomain has one reported small molecule inhibitor (AU1, rac-1). Here, advances made on the structure-activity relationship of a BPTF bromodomain ligand are reported using a combination of experimental and molecular dynamics simulations leading to the active enatiomer (S)-1. Additionally, a ligand deconstruction analysis was conducted to characterize important pharmacophores for engaging the BPTF bromodomain. These studies have been enabled by a protein-based fluorine NMR approach, highlighting the versatility of the method for selectivity, ligand deconstruction, and ligand binding. To enable future analysis of biological activity, cell growth analyses in a panel of cancer cell lines were carried out using CRISPR-Cas9 and (S)-1 to identify cell-based model systems that are sensitive to BPTF inhibition.
Asunto(s)
Proteínas del Tejido Nervioso/antagonistas & inhibidores , Pirazoles/farmacología , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Antígenos Nucleares , Proliferación Celular , Cristalografía por Rayos X , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Piridinas/síntesis química , Piridinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-ActividadRESUMEN
DNA methylation has been implicated as an epigenetic component of mechanisms that stabilize cell-fate decisions. Here, we have characterized the methylomes of human female hematopoietic stem/progenitor cells (HSPCs) and mature cells from the myeloid and lymphoid lineages. Hypomethylated regions (HMRs) associated with lineage-specific genes were often methylated in the opposing lineage. In HSPCs, these sites tended to show intermediate, complex patterns that resolve to uniformity upon differentiation, by increased or decreased methylation. Promoter HMRs shared across diverse cell types typically display a constitutive core that expands and contracts in a lineage-specific manner to fine-tune the expression of associated genes. Many newly identified intergenic HMRs, both constitutive and lineage specific, were enriched for factor binding sites with an implied role in genome organization and regulation of gene expression, respectively. Overall, our studies represent an important reference data set and provide insights into directional changes in DNA methylation as cells adopt terminal fates.
Asunto(s)
Metilación de ADN , Células Madre Hematopoyéticas/citología , Adulto , Sitios de Unión , Diferenciación Celular , Linaje de la Célula , Hibridación Genómica Comparativa , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Genoma Humano , Sistema Hematopoyético , Humanos , Modelos Biológicos , Regiones Promotoras GenéticasRESUMEN
The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress to cause profound anemia in zebrafish embryos. At least some protective activities of miR-451 stem from its ability to directly suppress production of 14-3-3zeta, a phospho-serine/threonine-binding protein that inhibits nuclear accumulation of transcription factor FoxO3, a positive regulator of erythroid anti-oxidant genes. Thus, in miR-144/451(-/-) erythroblasts, 14-3-3zeta accumulates, causing partial relocalization of FoxO3 from nucleus to cytoplasm with dampening of its transcriptional program, including anti-oxidant-encoding genes Cat and Gpx1. Supporting this mechanism, overexpression of 14-3-3zeta in erythroid cells and fibroblasts inhibits nuclear localization and activity of FoxO3. Moreover, shRNA suppression of 14-3-3zeta protects miR-144/451(-/-) erythrocytes against peroxide-induced destruction, and restores catalase activity. Our findings define a novel miRNA-regulated pathway that protects erythrocytes against oxidant stress, and, more generally, illustrate how a miRNA can influence gene expression by altering the activity of a key transcription factor.
Asunto(s)
Proteínas 14-3-3/metabolismo , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Estrés Oxidativo , Proteínas 14-3-3/genética , Transporte Activo de Núcleo Celular , Animales , Secuencia de Bases , Catalasa/metabolismo , Células Eritroides/enzimología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , MicroARNs/genética , Alineación de Secuencia , Eliminación de Secuencia/genética , Pez Cebra/genética , Pez Cebra/metabolismoRESUMEN
The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite its having no obvious role in microRNA-directed gene regulation. In mice, Ago2 (also known as Eif2c2) is uniquely required for viability, and only this family member retains catalytic competence. To investigate the evolutionary pressure to conserve Argonaute enzymatic activity, we engineered a mouse with catalytically inactive Ago2 alleles. Homozygous mutants died shortly after birth with an obvious anaemia. Examination of microRNAs and their potential targets revealed a loss of miR-451, a small RNA important for erythropoiesis. Though this microRNA is processed by Drosha (also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an intermediate 3' end, which is then further trimmed. Our findings link the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development.
Asunto(s)
Biocatálisis , Factor 2 Eucariótico de Iniciación/metabolismo , MicroARNs/biosíntesis , Alelos , Anemia/genética , Anemia/metabolismo , Animales , Proteínas Argonautas , Secuencia de Bases , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Homocigoto , Datos de Secuencia Molecular , Ribonucleasa III/metabolismoRESUMEN
The partial purification of mouse mammary gland stem cells (MaSCs) using combinatorial cell surface markers (Lin(-)CD24(+)CD29(h)CD49f(h)) has improved our understanding of their role in normal development and breast tumorigenesis. Despite the significant improvement in MaSC enrichment, there is presently no methodology that adequately isolates pure MaSCs. Seeking new markers of MaSCs, we characterized the stem-like properties and expression signature of label-retaining cells from the mammary gland of mice expressing a controllable H2b-GFP transgene. In this system, the transgene expression can be repressed in a doxycycline-dependent fashion, allowing isolation of slowly dividing cells with retained nuclear GFP signal. Here, we show that H2b-GFP(h) cells reside within the predicted MaSC compartment and display greater mammary reconstitution unit frequency compared with H2b-GFP(neg) MaSCs. According to their transcriptome profile, H2b-GFP(h) MaSCs are enriched for pathways thought to play important roles in adult stem cells. We found Cd1d, a glycoprotein expressed on the surface of antigen-presenting cells, to be highly expressed by H2b-GFP(h) MaSCs, and isolation of Cd1d(+) MaSCs further improved the mammary reconstitution unit enrichment frequency to nearly a single-cell level. Additionally, we functionally characterized a set of MaSC-enriched genes, discovering factors controlling MaSC survival. Collectively, our data provide tools for isolating a more precisely defined population of MaSCs and point to potentially critical factors for MaSC maintenance.
Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Glándulas Mamarias Animales/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Antígenos CD1d/metabolismo , Membrana Celular/metabolismo , Separación Celular , Femenino , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Ratones , ARN Interferente Pequeño/metabolismo , Coloración y EtiquetadoRESUMEN
The presence of basal lineage characteristics signifies hyperaggressive human adenocarcinomas of the breast, bladder and pancreas. However, the biochemical mechanisms that maintain this aberrant cell state are poorly understood. Here we performed marker-based genetic screens in search of factors needed to maintain basal identity in pancreatic ductal adenocarcinoma (PDAC). This approach revealed MED12 as a powerful regulator of the basal cell state in this disease. Using biochemical reconstitution and epigenomics, we show that MED12 carries out this function by bridging the transcription factor ΔNp63, a known master regulator of the basal lineage, with the Mediator complex to activate lineage-specific enhancer elements. Consistent with this finding, the growth of basal-like PDAC is hypersensitive to MED12 loss when compared to PDAC cells lacking basal characteristics. Taken together, our genetic screens have revealed a biochemical interaction that sustains basal identity in human cancer, which could serve as a target for tumor lineage-directed therapeutics.
Asunto(s)
Carcinoma Ductal Pancreático , Complejo Mediador , Neoplasias Pancreáticas , Factores de Transcripción , Proteínas Supresoras de Tumor , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Linaje de la Célula/genética , Elementos de Facilitación GenéticosRESUMEN
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
RESUMEN
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Células Asesinas Naturales , Antígeno B7-H1/metabolismo , Microambiente TumoralRESUMEN
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights: Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
RESUMEN
While mouse models and two-dimensional (2D) cell culture systems have dominated as research tools for cancer biology, three-dimensional (3D) cultures have gained traction as a new approach that retains features of in vivo biology within an in vitro system. Over time, 3D culture systems have evolved from spheroids and tumorspheres to organoids, and by doing so, they have become more complex and representative of original tissue. Such technological improvements have mostly benefited the study of heterogeneous solid tumors, like those found in breast cancer (BC), by providing an attractive avenue for scalable drug testing and biobank generation. Experimentally, organoids have been used in the BC field to dissect mechanisms related to cellular invasion and metastasis-and through co-culture methods-epithelial interactions with stromal and immune cells. In addition, organoid studies of wild-type mouse models and healthy donor samples have provided insight into the basic developmental cellular and molecular biology of the mammary gland, which may inform one's understanding of the initial stages of cancer development and progression.
Asunto(s)
Neoplasias , Esferoides Celulares , Ratones , Animales , Técnicas de Cocultivo , Células Tumorales Cultivadas , Organoides , Modelos Animales de Enfermedad , Neoplasias/patologíaRESUMEN
Multisubunit complexes containing molecular chaperones regulate protein production, stability, and degradation in virtually every cell type. We are beginning to recognize how generalized and tissue-specific chaperones regulate specialized aspects of erythropoiesis. For example, chaperones intersect with erythropoietin signaling pathways to protect erythroid precursors against apoptosis. Molecular chaperones also participate in hemoglobin synthesis, both directly and indirectly. Current knowledge in these areas only scratches the surface of what is to be learned. Improved understanding of how molecular chaperones regulate erythropoietic development and hemoglobin homeostasis should identify biochemical pathways amenable to pharmacologic manipulation in a variety of red blood cell disorders including thalassemia and other anemias associated with hemoglobin instability.
Asunto(s)
Eritrocitos/citología , Eritrocitos/fisiología , Eritropoyesis/fisiología , Chaperonas Moleculares/metabolismo , Animales , Diferenciación Celular/fisiología , HumanosRESUMEN
MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.
Asunto(s)
Células Precursoras Eritroides/citología , Eritropoyesis/genética , Factor de Transcripción GATA1/fisiología , MicroARNs/fisiología , Animales , Línea Celular Tumoral , Factores de Unión al ADN Específico de las Células Eritroides , Hibridación in Situ , Ratones , MicroARNs/análisis , Análisis por Micromatrices , Pez CebraRESUMEN
The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.
Asunto(s)
Antineoplásicos/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Piridazinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antígenos Nucleares/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Diseño de Fármacos , Ratones , Estructura Molecular , Proteínas del Tejido Nervioso/química , Dominios Proteicos , Piridazinas/química , Piridazinas/toxicidad , Relación Estructura-Actividad , Factores de Transcripción/químicaRESUMEN
Pregnancy reprograms mammary epithelial cells (MECs) to control their responses to pregnancy hormone re-exposure and carcinoma progression. However, the influence of pregnancy on the mammary microenvironment is less clear. Here, we used single-cell RNA sequencing to profile the composition of epithelial and non-epithelial cells in mammary tissue from nulliparous and parous female mice. Our analysis indicates an expansion of γδ natural killer T-like immune cells (NKTs) following pregnancy and upregulation of immune signaling molecules in post-pregnancy MECs. We show that expansion of NKTs following pregnancy is due to elevated expression of the antigen-presenting molecule CD1d on MECs. Loss of CD1d expression on post-pregnancy MECs, or overall lack of activated NKTs, results in mammary oncogenesis. Collectively, our findings illustrate how pregnancy-induced changes modulate the communication between MECs and the immune microenvironment and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis.