RESUMEN
RetroRules is a database of reaction rules for metabolic engineering (https://retrorules.org). Reaction rules are generic descriptions of chemical reactions that can be used in retrosynthesis workflows in order to enumerate all possible biosynthetic routes connecting a target molecule to its precursors. The use of such rules is becoming increasingly important in the context of synthetic biology applied to de novo pathway discovery and in systems biology to discover underground metabolism due to enzyme promiscuity. Here, we provide for the first time a complete set containing >400 000 stereochemistry-aware reaction rules extracted from public databases and expressed in the community-standard SMARTS (SMIRKS) format, augmented by a rule representation at different levels of specificity (the atomic environment around the reaction center). Such numerous representations of reactions expand natural chemical diversity by predicting de novo reactions of promiscuous enzymes.
Asunto(s)
Vías Biosintéticas , Biología Computacional/métodos , Bases de Datos Factuales , Ingeniería Metabólica/métodos , Manejo de Datos/métodos , Internet , Modelos Químicos , Estructura Molecular , EstereoisomerismoRESUMEN
Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic biology, metabolic engineering, and industrial biotechnology. The tools and workflows currently shared on the portal enables one to build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway design and engineering process from the selection of strains and targets, the design of DNA parts to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL are used throughout to enforce the compatibility of the tools. In a study carried out at four different sites, we illustrate the link between pathway design and engineering with the building of a library of E. coli lycopene-producing strains. We also benchmark our workflows on literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the validated pathways among the top 10 pathways generated by the workflows.
Asunto(s)
Escherichia coli , Biología Sintética , Biotecnología , Escherichia coli/genética , Ingeniería Metabólica , Programas InformáticosRESUMEN
For many applications in microbial synthetic biology, optimizing a desired function requires careful tuning of the degree to which various genes are expressed. One challenge for predicting such effects or interpreting typical characterization experiments is that in bacteria such as E. coli, genome copy number varies widely across different phases and rates of growth, which also impacts how and when genes are expressed from different loci. While such phenomena are relatively well-understood at a mechanistic level, our quantitative understanding of such processes is essentially limited to ideal exponential growth. In contrast, common experimental phenomena such as growth on heterogeneous media, metabolic adaptation, and oxygen restriction all cause substantial deviations from ideal exponential growth, particularly as cultures approach the higher densities at which industrial biomanufacturing and even routine screening experiments are conducted. To meet the need for predicting and explaining how gene dosage impacts cellular functions outside of exponential growth, we here report a novel modeling strategy that leverages agent-based simulation and high performance computing to robustly predict the dynamics and heterogeneity of genomic DNA content within bacterial populations across variable growth regimes. We show that by feeding routine experimental data, such as optical density time series, into our heterogeneous multiphasic growth simulator, we can predict genomic DNA distributions over a range of nonexponential growth conditions. This modeling strategy provides an important advance in the ability of synthetic biologists to evaluate the role of genomic DNA content and heterogeneity in affecting the performance of existing or engineered microbial functions.