Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 57(5): 2056-64, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19256561

RESUMEN

Equilibrium dialysis, molecular modeling, and multivariate data analysis were used to investigate the nature of the molecular interactions between 21 vanillin-inspired phenolic derivatives, 4 bile salts, and 2 commercially available beta-glucan preparations, Glucagel and PromOat, from barley and oats. The two beta-glucan products showed very similar binding properties. It was demonstrated that the two beta-glucan products are able to absorb most phenolic derivatives at a level corresponding to the absorption of bile salts. Glucosides of the phenolic compounds showed poor or no absorption. The four phenolic derivatives that showed strongest retention in the dialysis assay shared the presence of a hydroxyl group in para-position to a CHO group. However, other compounds with the same structural feature but possessing a different set of additional functional groups showed less retention. Principal component analysis (PCA) and partial least-squares regression (PLS) calculations using a multitude of diverse descriptors related to electronic, geometrical, constitutional, hybrid, and topological features of the phenolic compounds showed a marked distinction between aglycon, glucosides, and bile salt retention. These analyses did not offer additional information with respect to the mode of interaction of the individual phenolics with the beta-glucans. When the barley beta-glucan was subjected to enzyme degradation, the ability to bind some but not all of the phenolic derivatives was lost. It is concluded that the binding must be dependent on multiple characteristics that are not captured by a single molecular descriptor.


Asunto(s)
Avena/química , Hordeum/química , Fenoles/química , beta-Glucanos/química , Ácidos y Sales Biliares/química
2.
J Am Chem Soc ; 124(17): 4558-9, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11971692

RESUMEN

Currently, the most effective and economic way to convert an alkene into an optically active alcohol is the two-step sequence: hydrosilylation/oxidation. Much work has been devoted to elucidating effective catalysts for this process, but hitherto only one effective and highly stereoselective process has been available. Herein we present a novel catalytic system for the asymmetric hydrosilylation of aromatic alkenes, giving the products in high yields and with the highest enantioselectivity (up to 99% ee) ever observed for this reaction. The reaction works efficiently for a variety of substituted aromatic alkenes, giving access after Tamao oxidation to almost optically pure benzylic alcohols in high yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA