Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 566(7745): 543-547, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30747918

RESUMEN

Oligodendrocyte pathology is increasingly implicated in neurodegenerative diseases as oligodendrocytes both myelinate and provide metabolic support to axons. In multiple sclerosis (MS), demyelination in the central nervous system thus leads to neurodegeneration, but the severity of MS between patients is very variable. Disability does not correlate well with the extent of demyelination1, which suggests that other factors contribute to this variability. One such factor may be oligodendrocyte heterogeneity. Not all oligodendrocytes are the same-those from the mouse spinal cord inherently produce longer myelin sheaths than those from the cortex2, and single-cell analysis of the mouse central nervous system identified further differences3,4. However, the extent of human oligodendrocyte heterogeneity and its possible contribution to MS pathology remain unknown. Here we performed single-nucleus RNA sequencing from white matter areas of post-mortem human brain from patients with MS and from unaffected controls. We identified subclusters of oligodendroglia in control human white matter, some with similarities to mouse, and defined new markers for these cell states. Notably, some subclusters were underrepresented in MS tissue, whereas others were more prevalent. These differences in mature oligodendrocyte subclusters may indicate different functional states of oligodendrocytes in MS lesions. We found similar changes in normal-appearing white matter, showing that MS is a more diffuse disease than its focal demyelination suggests. Our findings of an altered oligodendroglial heterogeneity in MS may be important for understanding disease progression and developing therapeutic approaches.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Esclerosis Múltiple/patología , Oligodendroglía/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Autopsia , Biomarcadores , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Remielinización/genética , Análisis de Secuencia de ARN , Transcripción Genética , Sustancia Blanca/citología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
2.
Nature ; 560(7719): 494-498, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089906

RESUMEN

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Asunto(s)
Encéfalo/citología , Cresta Neural/metabolismo , Neuronas/citología , Empalme del ARN/genética , ARN/análisis , ARN/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Linaje de la Célula/genética , Células Cromafines/citología , Células Cromafines/metabolismo , Conjuntos de Datos como Asunto , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Cinética , Masculino , Ratones , Cresta Neural/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Transcripción Genética/genética
3.
Nat Neurosci ; 27(8): 1545-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849524

RESUMEN

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.


Asunto(s)
Encéfalo , Linaje de la Célula , Oligodendroglía , Animales , Oligodendroglía/fisiología , Ratones , Encéfalo/citología , Encéfalo/embriología , Linaje de la Célula/fisiología , Diferenciación Celular/fisiología , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología
4.
Acta Neuropathol Commun ; 11(1): 84, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217978

RESUMEN

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.


Asunto(s)
Neuroglía , Sustancia Blanca , Humanos , Femenino , Masculino , Ratones , Animales , Neuroglía/metabolismo , Médula Espinal/patología , Vaina de Mielina/metabolismo , Oligodendroglía/patología
5.
Dev Cell ; 57(11): 1421-1436.e5, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523173

RESUMEN

Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8-10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.


Asunto(s)
Oligodendroglía , Prosencéfalo , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Oligodendroglía/metabolismo , Transcriptoma/genética
6.
Nat Commun ; 11(1): 5860, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203872

RESUMEN

Mature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS). We found that MOL type 2 (MOL2) is enriched in the spinal cord when compared to the brain, while MOL types 5 and 6 (MOL5/6) increase their contribution to the OL lineage with age in all analyzed regions. MOL2 and MOL5/6 also have distinct spatial preference in the spinal cord regions where motor and sensory tracts run. OL progenitor cells (OPCs) are not specified into distinct MOL populations during development, excluding a major contribution of OPC intrinsic mechanisms determining MOL heterogeneity. In disease, MOL2 and MOL5/6 present different susceptibility during the chronic phase following traumatic spinal cord injury. Our results demonstrate that the distinct MOL populations have different spatial preference and different responses to disease.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula , Cuerpo Calloso/citología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Oligodendroglía/fisiología , Análisis de la Célula Individual , Médula Espinal/citología
7.
Methods Mol Biol ; 1936: 1-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820890

RESUMEN

Single-cell RNA sequencing has emerged as a powerful technique for the identification of distinct cell states/populations in complex tissues. We have recently used this technology to investigate heterogeneity of cells of the oligodendrocyte lineage in the mouse central nervous system. In this chapter, we describe methods to perform single-cell RNA sequencing on this glial cell lineage, and discuss experimental and computational approaches to explore the potential and to tackle hurdles associated with this technology.


Asunto(s)
Sistema Nervioso Central/citología , Oligodendroglía/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular , Linaje de la Célula , Sistema Nervioso Central/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Oligodendroglía/química
8.
Nat Med ; 24(12): 1837-1844, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420755

RESUMEN

Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS.


Asunto(s)
Linaje de la Célula/genética , Sistema Inmunológico , Esclerosis Múltiple/genética , Transcriptoma/genética , Empalme Alternativo/genética , Animales , Presentación de Antígeno/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/fisiopatología , Regulación de la Expresión Génica/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Ratones , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/genética , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Análisis de la Célula Individual
9.
Dev Cell ; 46(4): 504-517.e7, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30078729

RESUMEN

Pdgfra+ oligodendrocyte precursor cells (OPCs) arise in distinct specification waves during embryogenesis in the central nervous system (CNS). It is unclear whether there is a correlation between these waves and different oligodendrocyte (OL) states at adult stages. Here, we present bulk and single-cell transcriptomics resources providing insights on how transitions between these states occur. We found that post-natal OPCs from brain and spinal cord present similar transcriptional signatures. Moreover, post-natal OPC progeny of E13.5 Pdgfra+ cells present electrophysiological and transcriptional profiles similar to OPCs derived from subsequent specification waves, indicating that Pdgfra+ pre-OPCs rewire their transcriptional network during development. Single-cell RNA-seq and lineage tracing indicates that a subset of E13.5 Pdgfra+ cells originates cells of the pericyte lineage. Thus, our results indicate that embryonic Pdgfra+ cells in the CNS give rise to distinct post-natal cell lineages, including OPCs with convergent transcriptional profiles in different CNS regions.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Oligodendroglía/citología , Animales , Células Cultivadas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Médula Espinal/metabolismo , Células Madre/citología
10.
Curr Opin Neurobiol ; 47: 168-175, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29126015

RESUMEN

Oligodendrocytes (OLs) are glial cells in the central nervous system (CNS), which produce myelin, a lipid-rich membrane that insulates neuronal axons. The main function ascribed to OLs is to regulate the speed of electric pulse transmission, and as such OLs have been widely considered as a single and discrete population. Nevertheless, OLs and their precursor cells (OPCs) throughout the CNS have different morphologies and regional functional differences have been observed. Moreover, OLs have recently been involved in other functional processes such as metabolic coupling with axons. In this review, we focus on recent advances in single-cell transcriptomics suggesting that OLs are more heterogeneous than previously thought, with defined subpopulations and cell states that are associated with different stages of lineage progression and might also represent distinct functional states.


Asunto(s)
Linaje de la Célula/genética , Sistema Nervioso Central/citología , Células-Madre Neurales/citología , Oligodendroglía/citología , Animales , Perfilación de la Expresión Génica , Humanos
11.
Science ; 352(6291): 1326-1329, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27284195

RESUMEN

Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Neurogénesis , Oligodendroglía/citología , Animales , Antígenos/genética , Antígenos/metabolismo , Biomarcadores/metabolismo , Encéfalo/citología , Linaje de la Célula , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Aprendizaje/fisiología , Ratones , Actividad Motora/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , ARN Mensajero/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
12.
Nat Biotechnol ; 30(3): 278-82, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22371082

RESUMEN

The different pluripotent states of mouse embryonic stem cells (ESCs) in vitro have been shown to correspond to stages of mouse embryonic development. For human cells, little is known about the events that precede the generation of ESCs or whether they correlate with in vivo developmental stages. Here we investigate the cellular and molecular changes that occur during the transition from the human inner cell mass (ICM) to ESCs in vitro. We demonstrate that human ESCs originate from a post-ICM intermediate (PICMI), a transient epiblast-like structure that has undergone X-inactivation in female cells and is both necessary and sufficient for ESC derivation. The PICMI is the result of progressive and defined ICM organization in vitro and has a distinct state of cell signaling. The PICMI can be cryopreserved without compromising ESC derivation capacity. As a closer progenitor of ESCs than the ICM, the PICMI provides insight into the pluripotent state of human stem cells.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Células Madre Embrionarias/citología , Animales , Masa Celular Interna del Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Inactivación del Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA