Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23434322

RESUMEN

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Asunto(s)
5-Metilcitosina/análisis , Citosina/análogos & derivados , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Citosina/análisis , Citosina/metabolismo , ADN Glicosilasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Factor 4 Similar a Kruppel , Espectrometría de Masas , Ratones , Oxidación-Reducción , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción del Factor Regulador X , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Chembiochem ; 25(9): e202400111, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38476018

RESUMEN

Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.


Asunto(s)
ADN , Marcaje Isotópico , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , ADN/química , ADN/metabolismo , Antraciclinas/química , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Aclarubicina/química , Aclarubicina/farmacología , Aclarubicina/metabolismo , Resonancia Magnética Nuclear Biomolecular
3.
J Biomol NMR ; 77(3): 111-119, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289305

RESUMEN

In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore proton-detected pulse schemes probing through-bond 13C-13C networks to study mobile protein sidechains as well as polysaccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at high and ultra-high magnetic fields.


Asunto(s)
Carbono , Protones , Humanos , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Proteínas/química
4.
Nucleic Acids Res ; 49(8): 4338-4349, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33341892

RESUMEN

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB-DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.


Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Histonas/química , Methanobacteriales/química , Nucleosomas/química , Fenómenos Mecánicos , Multimerización de Proteína
5.
PLoS Genet ; 14(9): e1007582, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212449

RESUMEN

The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of "nucleosomes" of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into "endless" hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation.


Asunto(s)
Archaea/fisiología , ADN/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Histonas/fisiología , Cristalografía por Rayos X , Genoma Arqueal/fisiología , Histonas/química , Nucleosomas/metabolismo , Transcripción Genética/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-31871087

RESUMEN

The Mycobacterium tuberculosis ß-lactamase BlaC is a broad-spectrum ß-lactamase that can convert a range of ß-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, kex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.


Asunto(s)
Mycobacterium tuberculosis/enzimología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/farmacología , Ácidos Borónicos/farmacología , Dominio Catalítico , Ácido Clavulánico/farmacología , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , beta-Lactamasas/genética
7.
Anal Biochem ; 588: 113469, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604067

RESUMEN

Nucleosomes are a crucial platform for the recruitment and assembly of protein complexes that process the DNA. Mechanistic and structural in vitro studies typically rely on recombinant nucleosomes that are reconstituted using artificial, strong-positioning DNA sequences. To facilitate such studies on native, genomic nucleosomes, there is a need for methods to produce any desired DNA sequence in an efficient manner. The current methods either do not offer much flexibility in choice of sequence or are less efficient in yield and labor. Here, we show that ramified rolling circle amplification (RCA) can be used to produce milligram amounts of a genomic nucleosomal DNA fragment in a scalable, one-pot reaction overnight. The protocol is efficient and flexible in choice of DNA sequence. It yields 10-fold more product than PCR, and rivals production using plasmids. We demonstrate the approach by producing the genomic DNA from the human LIN28B locus and show that it forms functional nucleosomes capable of binding pioneer transcription factor Oct4.


Asunto(s)
ADN Recombinante/síntesis química , Técnicas de Amplificación de Ácido Nucleico/métodos , Histonas/genética , Humanos , Nucleosomas/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas de Unión al ARN/genética
8.
Mol Cell Proteomics ; 17(10): 2018-2033, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30021884

RESUMEN

Cells organize their actions partly through tightly controlled protein-protein interactions-collectively termed the interactome. Here we use crosslinking mass spectrometry (XL-MS) to chart the protein-protein interactions in intact human nuclei. Overall, we identified ∼8,700 crosslinks, of which 2/3 represent links connecting distinct proteins. From these data, we gain insights on interactions involving histone proteins. We observed that core histones on the nucleosomes expose well-defined interaction hot spots. For several nucleosome-interacting proteins, such as USF3 and Ran GTPase, the data allowed us to build low-resolution models of their binding mode to the nucleosome. For HMGN2, the data guided the construction of a refined model of the interaction with the nucleosome, based on complementary NMR, XL-MS, and modeling. Excitingly, the analysis of crosslinks carrying posttranslational modifications allowed us to extract how specific modifications influence nucleosome interactions. Overall, our data depository will support future structural and functional analysis of cell nuclei, including the nucleoprotein assemblies they harbor.


Asunto(s)
Núcleo Celular/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Histonas/metabolismo , Espectrometría de Masas/métodos , Línea Celular Tumoral , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Reproducibilidad de los Resultados
9.
Nucleic Acids Res ; 46(14): 7138-7152, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29905837

RESUMEN

Genome replication, transcription and repair require the assembly/disassembly of the nucleosome. Histone chaperones are regulators of this process by preventing formation of non-nucleosomal histone-DNA complexes. Aprataxin and polynucleotide kinase like factor (APLF) is a non-homologous end-joining (NHEJ) DNA repair factor that possesses histone chaperone activity in its acidic domain (APLFAD). Here, we studied the molecular basis of this activity using biochemical and structural methods. We find that APLFAD is intrinsically disordered and binds histone complexes (H3-H4)2 and H2A-H2B specifically and with high affinity. APLFAD prevents unspecific complex formation between H2A-H2B and DNA in a chaperone assay, establishing for the first time its specific histone chaperone function for H2A-H2B. On the basis of a series of nuclear magnetic resonance studies, supported by mutational analysis, we show that the APLFAD histone binding domain uses two aromatic side chains to anchor to the α1-α2 patches on both H2A and H2B, thereby covering most of their DNA-interaction surface. An additional binding site on both APLFAD and H2A-H2B may be involved in the handoff between APLF and DNA or other chaperones. Together, our data support the view that APLF provides not only a scaffold but also generic histone chaperone activity for the NHEJ-complex.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Chaperonas de Histonas/química , Proteínas de Unión a Poli-ADP-Ribosa/química , ADN/química , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios Proteicos
10.
Molecules ; 25(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114657

RESUMEN

Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.


Asunto(s)
Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Nucleosomas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Electricidad Estática , Termodinámica
11.
Angew Chem Int Ed Engl ; 59(46): 20508-20514, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32533782

RESUMEN

The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Hidrólisis , Cinética , Ligandos , Modelos Moleculares , Unión Proteica
12.
J Biomol NMR ; 71(2): 69-77, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29860650

RESUMEN

Understanding of the molecular mechanisms of protein function requires detailed insight into the conformational landscape accessible to the protein. Conformational changes can be crucial for biological processes, such as ligand binding, protein folding, and catalysis. NMR spectroscopy is exquisitely sensitive to such dynamic changes in protein conformations. In particular, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are a powerful tool to investigate protein dynamics on a millisecond time scale. CPMG experiments that probe the chemical shift modulation of 15N in-phase magnetization are particularly attractive, due to their high sensitivity. These experiments require high power 1H decoupling during the CPMG period to keep the 15N magnetization in-phase. Recently, an improved version of the in-phase 15N-CPMG experiment was introduced, offering greater ease of use by employing a single 1H decoupling power for all CPMG pulsing rates. In these experiments however, incomplete decoupling of off-resonance amide 1H spins introduces an artefactual dispersion of relaxation rates, the so-called slow-pulsing artifact. Here, we analyze the slow-pulsing artifact in detail and demonstrate that it can be suppressed through the use of composite pulse decoupling (CPD). We report the performances of various CPD schemes and show that CPD decoupling based on the 90x-240y-90x element results in high-quality dispersion curves free of artifacts, even for amides with high 1H offset.


Asunto(s)
Artefactos , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Amidas , Magnetismo , Protones
13.
Angew Chem Int Ed Engl ; 57(17): 4571-4575, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29465771

RESUMEN

Chromatin function depends on a dense network of interactions between nucleosomes and a wide range of proteins. A detailed description of these protein-nucleosome interactions is required to reach a full molecular understanding of chromatin function in both genetics and epigenetics. Herein, we show that the structure, dynamics, and interactions of nucleosomes can be interrogated in a residue-specific manner by using state-of-the-art solid-state NMR spectroscopy. Using sedimented nucleosomes, high-resolution spectra were obtained for both flexible histone tails and the non-mobile histone core. Through co-sedimentation of a nucleosome-binding peptide, we demonstrate that protein-binding sites on the nucleosome surface can be determined. We believe that this approach holds great promise as it is generally applicable, extendable to include the structure and dynamics of the bound proteins, and scalable to interactions of proteins with higher-order chromatin structures, including isolated and cellular chromatin.


Asunto(s)
Cromatina/química , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/química , Sitios de Unión , Modelos Moleculares , Conformación de Ácido Nucleico
14.
Nucleic Acids Res ; 42(13): 8705-18, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957607

RESUMEN

Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.


Asunto(s)
Nicotiana , Proteínas de Plantas/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Secuencia Conservada , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Desnaturalización de Ácido Nucleico , Proteínas de Plantas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Electricidad Estática
15.
Proc Natl Acad Sci U S A ; 108(30): 12283-8, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21730181

RESUMEN

Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome complex determined by a combination of methyl-transverse relaxation optimized nuclear magnetic resonance spectroscopy (methyl-TROSY) and mutational analysis. We found that HMGN2 binds to both the acidic patch in the H2A-H2B dimer and to nucleosomal DNA near the entry/exit point, "stapling" the histone core and the DNA. These results provide insight into how HMGNs regulate chromatin structure through interfering with the binding of linker histone H1 to the nucleosome as well as a structural basis of how phosphorylation induces dissociation of HMGNs from chromatin during mitosis. Importantly, our approach is generally applicable to the study of nucleosome-binding interactions in chromatin.


Asunto(s)
Proteína HMGN2/química , Nucleosomas/química , Secuencia de Aminoácidos , Sitios de Unión , ADN/química , ADN/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
16.
Nat Commun ; 15(1): 1948, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431715

RESUMEN

Microtubules (MTs) are key components of the eukaryotic cytoskeleton and are essential for intracellular organization, organelle trafficking and mitosis. MT tasks depend on binding and interactions with MT-associated proteins (MAPs). MT-associated protein 7 (MAP7) has the unusual ability of both MT binding and activating kinesin-1-mediated cargo transport along MTs. Additionally, the protein is reported to stabilize MTs with its 112 amino-acid long MT-binding domain (MTBD). Here we investigate the structural basis of the interaction of MAP7 MTBD with the MT lattice. Using a combination of solid and solution-state nuclear magnetic resonance (NMR) spectroscopy with electron microscopy, fluorescence anisotropy and isothermal titration calorimetry, we shed light on the binding mode of MAP7 to MTs at an atomic level. Our results show that a combination of interactions between MAP7 and MT lattice extending beyond a single tubulin dimer and including tubulin C-terminal tails contribute to formation of the MAP7-MT complex.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Orgánulos/metabolismo , Tubulina (Proteína)/metabolismo , Humanos
17.
Methods Mol Biol ; 2819: 357-379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028515

RESUMEN

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Asunto(s)
Cromatina , Histonas , Nucleosomas , Unión Proteica , Cromatina/metabolismo , Cromatina/genética , Nucleosomas/metabolismo , Histonas/metabolismo , ADN/metabolismo , ADN/química , ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Chaperonas de Histonas/metabolismo
18.
J Mol Biol ; 436(16): 168668, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908784

RESUMEN

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.

19.
Biomol NMR Assign ; 17(1): 83-88, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37099260

RESUMEN

The microtubule-associated protein 7 (MAP7) is a protein involved in cargo transport along microtubules (MTs) by interacting with kinesin-1 through the C-terminal kinesin-binding domain. Moreover, the protein is reported to stabilize MT, thereby playing a key role in axonal branch development. An important element for this latter function is the 112 amino-acid long N-terminal microtubule-binding domain (MTBD) of MAP7. Here we report NMR backbone and side-chain assignments that suggest a primarily alpha-helical secondary fold of this MTBD in solution. The MTBD contains a central long α-helical segment that includes a short four-residue 'hinge' sequence with decreased helicity and increased flexibility. Our data represent a first step towards analysing the complex interaction of MAP7 with MTs at an atomic level via NMR spectroscopy.


Asunto(s)
Cinesinas , Proteínas Asociadas a Microtúbulos , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Humanos
20.
Membranes (Basel) ; 13(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984752

RESUMEN

(1) Background: antimicrobial resistance is becoming a dramatic problem for public health, and the design of new antimicrobial agents is an active research area. (2) Methods: based on our previous work, we designed an improved version of the crabrolin peptide and characterized its functional and structural properties with a wide range of techniques. (3) Results: the newly designed peptide, crabrolin21, is much more active than the previous ones and shows specific selectivity towards bacterial cells. (4) Conclusions: crabrolin21 shows interesting properties and deserves further studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA