Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978343

RESUMEN

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/crecimiento & desarrollo , Venenos de Serpiente/metabolismo , Células Madre Adultas/metabolismo , Animales , Serpientes de Coral/metabolismo , Perfilación de la Expresión Génica/métodos , Organoides/metabolismo , Glándulas Salivales/metabolismo , Venenos de Serpiente/genética , Serpientes/genética , Serpientes/crecimiento & desarrollo , Células Madre/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
2.
PLoS Biol ; 18(11): e3000904, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33156822

RESUMEN

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Asunto(s)
Antivirales/farmacología , Proteínas Portadoras/efectos de los fármacos , Enterovirus/efectos de los fármacos , Proteínas no Estructurales Virales/efectos de los fármacos , Antígenos Virales , Proteínas Portadoras/metabolismo , Descubrimiento de Drogas/métodos , Enterovirus/patogenicidad , Infecciones por Enterovirus/virología , Fluoxetina/farmacología , Células HeLa , Humanos , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
Food Chem Toxicol ; 184: 114438, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191119

RESUMEN

Toxicity testing of botanicals is challenging because of their chemical complexity and variability. Since botanicals may affect many different modes of action involved in neuronal function, we used microelectrode array (MEA) recordings of primary rat cortical cultures to screen 16 different botanical extracts for their effects on cell viability and neuronal network function in vitro. Our results demonstrate that extract materials (50 µg/mL) derived from goldenseal, milk thistle, tripterygium, and yohimbe decrease mitochondrial activity following 7 days exposure, indicative of cytotoxicity. Importantly, most botanical extracts alter neuronal network function following acute exposure. Extract materials (50 µg/mL) derived from aristolochia, ephedra, green tea, milk thistle, tripterygium, and usnea inhibit neuronal activity. Extracts of kava, kratom and yohimbe are particularly potent and induce a profound inhibition of neuronal activity at the low dose of 5 µg/mL. Extracts of blue cohosh, goldenseal and oleander cause intensification of the bursts. Aconite extract (5 µg/mL) evokes a clear hyperexcitation with a marked increase in the number of spikes and (network) bursts. The distinct activity patterns suggest that botanical extracts have diverse modes of action. Our combined data also highlight the applicability of MEA recordings for hazard identification and potency ranking of botanicals.


Asunto(s)
Hydrastis , Extractos Vegetales , Animales , Ratas , Microelectrodos , Extractos Vegetales/toxicidad , Pruebas de Toxicidad , Neuronas
4.
Neurotoxicology ; 102: 58-67, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599286

RESUMEN

Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.


Asunto(s)
Corteza Cerebral , Insecticidas , Neuronas , Animales , Insecticidas/toxicidad , Neuronas/efectos de los fármacos , Femenino , Masculino , Corteza Cerebral/efectos de los fármacos , Ratas , Células Cultivadas , Potenciales de Acción/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Microelectrodos , Ratas Wistar
5.
Toxicol Lett ; 373: 53-61, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375636

RESUMEN

Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.


Asunto(s)
Tetrodotoxina , Canales de Sodio Activados por Voltaje , Animales , Humanos , Ratas , Carbamazepina/farmacología , Flecainida , Lidocaína/toxicidad , Riluzol/farmacología , Tetrodotoxina/farmacología , Tetrodotoxina/toxicidad , Canales de Sodio Activados por Voltaje/efectos de los fármacos
6.
Neurotoxicology ; 96: 184-196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120036

RESUMEN

In most airplanes, cabin air is extracted from the turbine compressors, so-called bleed air. Bleed air can become contaminated by leakage of engine oil or hydraulic fluid and possible neurotoxic constituents, like triphenyl phosphate (TPhP) and tributyl phosphate (TBP). The aim of this study was to characterize the neurotoxic hazard of TBP and TPhP, and to compare this with the possible hazard of fumes originating from engine oils and hydraulic fluids in vitro. Effects on spontaneous neuronal activity were recorded in rat primary cortical cultures grown on microelectrode arrays following exposure for 0.5 h (acute), and 24 h and 48 h (prolonged) to TBP and TPhP (0.01-100 µM) or fume extracts (1-100 µg/mL) prepared from four selected engine oils and two hydraulic fluids by a laboratory bleed air simulator. TPhP and TBP concentration-dependently reduced neuronal activity with equal potency, particularly during acute exposure (TPhP IC50: 10-12 µM; TBP IC50: 15-18 µM). Engine oil-derived fume extracts persistently reduced neuronal activity. Hydraulic fluid-derived fume extracts showed a stronger inhibition during 0.5 h exposure, but the degree of inhibition attenuates during 48 h. Overall, fume extracts from hydraulic fluids were more potent than those from engine oils, in particular during 0.5 h exposure, although the higher toxicity is unlikely to be due only to higher levels of TBP and TPhP in hydraulic fluids. Our combined data show that bleed air contaminants originating from selected engine oils or hydraulic fluids exhibit neurotoxic hazard in vitro, with fumes derived from the selected hydraulic fluids being most potent.


Asunto(s)
Aeronaves , Aceites , Animales , Ratas , Organofosfatos
7.
mBio ; 14(2): e0024523, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36877033

RESUMEN

Enterovirus D68 (EV-D68) is an emerging pathogen associated with mild to severe respiratory disease. Since 2014, EV-D68 is also linked to acute flaccid myelitis (AFM), causing paralysis and muscle weakness in children. However, it remains unclear whether this is due to an increased pathogenicity of contemporary EV-D68 clades or increased awareness and detection of this virus. Here, we describe an infection model of primary rat cortical neurons to study the entry, replication, and functional consequences of different EV-D68 strains, including historical and contemporary strains. We demonstrate that sialic acids are important (co)receptors for infection of both neurons and respiratory epithelial cells. Using a collection of glycoengineered isogenic HEK293 cell lines, we show that sialic acids on either N-glycans or glycosphingolipids can be used for infection. Additionally, we show that both excitatory glutamatergic and inhibitory GABA-ergic neurons are susceptible and permissive to historical and contemporary EV-D68 strains. EV-D68 infection of neurons leads to the reorganization of the Golgi-endomembranes forming replication organelles, first in the soma and later in the processes. Finally, we demonstrate that the spontaneous neuronal activity of EV-D68-infected neuronal network cultured on microelectrode arrays (MEA) is decreased, independent of the virus strain. Collectively, our findings provide novel insights into neurotropism and -pathology of different EV-D68 strains, and argue that it is unlikely that increased neurotropism is a recently acquired phenotype of a specific genetic lineage. IMPORTANCE Acute flaccid myelitis (AFM) is a serious neurological illness characterized by muscle weakness and paralysis in children. Since 2014, outbreaks of AFM have emerged worldwide, and they appear to be caused by nonpolio enteroviruses, particularly enterovirus-D68 (EV-D68), an unusual enterovirus that is known to mainly cause respiratory disease. It is unknown whether these outbreaks reflect a change of EV-D68 pathogenicity or are due to increased detection and awareness of this virus in recent years. To gain more insight herein, it is crucial to define how historical and circulating EV-D68 strains infect and replicate in neurons and how they affect their physiology. This study compares the entry and replication in neurons and the functional consequences on the neural network upon infection with an old "historical" strain and contemporary "circulating" strains of EV-D68.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Ratas , Animales , Humanos , Células HEK293 , Parálisis/complicaciones , Neuronas , Ácidos Siálicos
8.
Clin Toxicol (Phila) ; 60(1): 71-75, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34121559

RESUMEN

INTRODUCTION: The accidental ingestion of diluted household descaling products by infants is a phenomenon that poison control centers regularly encounter. Feeding infants with baby milk prepared with water from electric kettles still containing descaler is a common way of exposure. This study aimed to determine the risks related to ingestion of (diluted) descalers by infants. METHODS: pH measurements were performed using acetic acid and three different commercially available electric kettle descalers. The pH of different dilutions was measured in the absence or presence of baby milk powder. In addition, an overview was made of pH values of different electric kettle descalers as given by the product information of the manufacturer. Finally, a simple pharmacokinetic (PK) model was used to predict changes in blood pH in infants after ingestion of acetic acid, which is the most commonly used descaler. RESULTS: Several commercially available electric kettle descalers have a pH <2. Even after diluting such descalers up to 10 times the pH can remain low. The addition of milk powder increases the pH of descalers containing weaker acids, with a pH >1.5, while descalers with stronger acids and pH <1 show little pH increase after the addition of milk powder. Finally, a simple PBPK model for the ingestion of acetic acid predicted that the ingestion of larger amounts of acetic acid (>1000 mg) by an infant could result in relevant changes in blood pH. CONCLUSIONS: Commercially available electric kettle descaling products may pose a health risk to infants in case of accidental ingestion since the pH of some of these products can be very low, even when diluted 10-times or in the presence of baby milk powder. Oral exposure of infants to the common descaler acetic acid, after accidental preparation of baby milk with cleaning vinegar, will probably not result in serious local effects, but changes in blood pH cannot be excluded when larger amounts of acetic acid are ingested.


Asunto(s)
Acetatos , Productos Domésticos , Ingestión de Alimentos , Humanos , Lactante , Centros de Control de Intoxicaciones
9.
Curr Protoc ; 1(6): e158, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34152700

RESUMEN

Neurotoxicity testing of chemicals, drug candidates, and environmental pollutants still relies on extensive in vivo studies that are very costly, time-consuming, and ethically debated due to the large number of animals typically used. Currently, rat primary cortical cultures are widely used for in vitro neurotoxicity studies, as they closely resemble the in vitro brain with respect to the diversity of cell types, their physiological functions, and the pathological processes that they undergo. Common in vitro assays for neurotoxicity screening often focus on very target-specific endpoints such as morphological, biochemical, or electrophysiological changes, and such narrow focus can hamper translation and interpretation. Microelectrode array (MEA) recordings provide a non-invasive platform for extracellular recording of electrical activity of cultured neuronal cells, thereby enabling the evaluation of changes in neuronal (network) function as a sensitive and integrated endpoint for neurotoxicity screening. Here, we describe an in vitro approach for assessing changes in neuronal network function as a measure for neurotoxicity, using rat primary cortical cultures grown on MEAs. We provide a detailed protocol for the culture of rat primary cortical cells, and describe several experimental procedures to address acute, subchronic, and chronic exposure scenarios. We additionally describe the steps for processing and analyzing MEA and cell viability data. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of rat primary cortical cells on 48-well MEA plates Support Protocol 1: Pretreatment and washing of 48-well MEA plates before first use or for re-use Support Protocol 2: Coating of 48-well MEA plates with 0.1% PEI solution Basic Protocol 2: MEA measurements during acute exposure Alternate Protocol 1: MEA measurements during subchronic exposure Alternate Protocol 2: MEA measurements during chronic exposure Support Protocol 3: Determination of cell viability after MEA experiments Basic Protocol 3: MEA data processing Basic Protocol 4: Analyzing MEA experiments after acute and subchronic exposure Alternate Protocol 3: Analyzing MEA experiments after chronic exposure.


Asunto(s)
Corteza Cerebral , Síndromes de Neurotoxicidad , Animales , Células Cultivadas , Microelectrodos , Neuronas , Ratas
10.
ALTEX ; 37(1): 121-135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31686111

RESUMEN

A sizeable proportion of drug attrition is due to drug-induced seizures. Current available animal models frequently fail to predict human seizure liability. Therefore, there is a need for in vitro alternatives, preferably based on human-derived neurons to circumvent interspecies translation. The increasing number of commercially available human induced pluripotent stem cell (hiPSC)-derived neuronal models holds great promise for replacing rodent primary cultures. We therefore tested three different hiPSC-derived neuronal models for their applicability for in vitro seizure liability assessment. Using immunofluorescent staining and multi-well micro-electrode arrays we show that all models develop functional neuronal networks that exhibit spontaneous activity and (network) bursting behavior. Developmental patterns differ between the models, probably due to differences in model composition and seeding density. Nevertheless, neuronal activity and (network) bursting can be reproducibly modulated with the seizurogenic compounds strychnine, picrotoxin (PTX) and 4-aminopyridine (4-AP). However, the sensitivity and degree of chemical-induced effects differs between the models, which can likely be explained by differences in seeding density, maturation and different ratios of inhibitory and excitatory cell types. Importantly, compared to rat primary cortical neurons, the hiPSC-derived neuronal models were equally, or even better in the case of 4-AP, suited to detect seizurogenicity. Overall, our data indicate that hiPSC-derived neuronal models may in the future be used as a first screening tool for in vitro seizure liability assessment. However, before hiPSC-derived neuronal models can fully replace animal experiments, more compounds should be tested and the available models must be further characterized to fully understand their applicability.


Asunto(s)
Alternativas al Uso de Animales , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas/efectos de los fármacos , Convulsiones/inducido químicamente , Animales , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Ratas
11.
Sci Rep ; 10(1): 5311, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210279

RESUMEN

Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABAA receptor in neuronal function, we investigated acute effects of PFAS on this receptor and on spontaneous neuronal network activity. PFOS (Lowest Observed Effect Concentration (LOEC) 0.1 µM) and PFOA (LOEC 1 µM) inhibited the GABA-evoked current and acted as non-competitive human GABAA receptor antagonists. Network activity of rat primary cortical cultures increased following exposure to PFOS (LOEC 100 µM). However, exposure of networks of human induced pluripotent stem cell (hiPSC)-derived neurons decreased neuronal activity. The higher sensitivity of the α1ß2γ2L GABAA receptor for PFAS as compared to neuronal networks suggests that PFAS have additional mechanisms of action, or that compensatory mechanisms are at play. Differences between rodent and hiPSC-derived neuronal networks highlight the importance of proper model composition. LOECs for PFAS on GABAA receptor and neuronal activity reported here are within or below the range found in blood levels of occupationally exposed humans. For PFOS, LOECs are even within the range found in human serum and plasma of the general population, suggesting a clear neurotoxic risk.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Receptores de GABA-A/química , Animales , Células Cultivadas , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Xenopus laevis
12.
Environ Health Perspect ; 116(5): 637-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18470311

RESUMEN

BACKGROUND: Oxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants. OBJECTIVE: Our objective was to investigate the effects of a hydroxylated metabolite of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+]i) and vesicular catecholamine release in PC12 cells. METHODS: We measured vesicular catecholamine release and [Ca2+]i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively. RESULTS: Acute exposure of PC12 cells to 6-OH-BDE-47 (5 microM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+]i, which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 microM). An additional late increase in [Ca2+]i was often observed at > or =1 microM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 microM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria. CONCLUSION: The hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+]i cannot be ruled out.


Asunto(s)
Calcio/metabolismo , Exocitosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Homeostasis/efectos de los fármacos , Células PC12/efectos de los fármacos , Bifenilos Polibrominados/toxicidad , Animales , Calcio/análisis , Catecolaminas/metabolismo , Exposición a Riesgos Ambientales , Éteres Difenilos Halogenados , Hidroxilación , Células PC12/metabolismo , Bifenilos Polibrominados/metabolismo , Ratas
13.
Toxicol In Vitro ; 22(6): 1568-72, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18602458

RESUMEN

Ethylbenzene and para-xylene (p-xylene), but not the chemically closely related organic solvents ortho-xylene (o-xylene) and meta-xylene (m-xylene), are known to cause ototoxicity and irreversible hearing loss, though the underlying mechanisms are still unknown. In this study, effects of ethylbenzene and of p-, o-, and m-xylene on human heteromeric alpha9alpha10 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes were investigated using the two-electrode voltage clamp technique. ACh dose-dependently evoked an alpha9alpha10 nAChR-mediated ion current with an EC(50) of 137 microM. When ACh is applied at a low concentration (10 microM), the nAChR-mediated ion current is inhibited by a low concentration (10 microM) of ethylbenzene and p-xylene, but not by the same concentration of the non-ototoxic solvents. At a high solvent concentration (300 microM), all solvents cause inhibition of the ion currents evoked by 10 microM ACh. Ion currents evoked by a near maximum-effective concentration ACh (1mM) are inhibited by the selected organic solvents only at 300 microM. These results demonstrate that low concentrations of the known ototoxic solvents ethylbenzene and p-xylene inhibit alpha9alpha10 nAChR-mediated ion currents, whereas the structurally related, non-ototoxic solvents m-xylene and o-xylene do not, indicating that the alpha9alpha10 nAChR is a potential target for solvent-induced ototoxicity.


Asunto(s)
Receptores Nicotínicos/efectos de los fármacos , Solventes/toxicidad , Acetilcolina/administración & dosificación , Acetilcolina/farmacología , Animales , Derivados del Benceno/administración & dosificación , Derivados del Benceno/toxicidad , Relación Dosis-Respuesta a Droga , Femenino , Trastornos de la Audición/inducido químicamente , Trastornos de la Audición/prevención & control , Humanos , Oocitos , Técnicas de Placa-Clamp , Solventes/administración & dosificación , Xenopus laevis , Xilenos/administración & dosificación , Xilenos/toxicidad
14.
Environ Health Perspect ; 115(6): 865-70, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17589592

RESUMEN

BACKGROUND: Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE: The objective of this research was to investigate neurodevelopmental mechanisms underlying previously observed behavioral impairments observed after neonatal exposure to polybrominated diphenyl ethers (PBDEs). METHODS: C57Bl/6 mice received a single oral dose of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on postnatal day (PND) 10 (i.e., during the brain growth spurt). On PND17-19, effects on synaptic plasticity, levels of postsynaptic proteins involved in long-term potentiation (LTP), and vesicular release mechanisms were studied ex vivo. We investigated possible acute in vitro effects of BDE-47 on vesicular catecholamine release and intracellular Ca(2+) in rat pheochromocytoma (PC12) cells. RESULTS: Field-excitatory postsynaptic potential (f-EPSP) recordings in the hippocampal CA1 area demonstrated reduced LTP after exposure to 6.8 mg (14 micromol)/kg body weight (bw) BDE-47, whereas paired-pulse facilitation was not affected. Western blotting of proteins in the postsynaptic, triton-insoluble fraction of hippocampal tissue revealed a reduction of glutamate receptor subunits NR2B and GluR1 and autophosphorylated-active Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII), whereas other proteins tested appeared unaffected. Amperometric recordings in chromaffin cells from mice exposed to 68 mg (140 micromol)/kg bw BDE-47 did not reveal changes in catecholamine release parameters. Modest effects on vesicular release and intracellular Ca(2+) in PC12 cells were seen following acute exposure to 20 microM BDE-47. The combined results suggest a post-synaptic mechanism in vivo. CONCLUSION: Early neonatal exposure to a single high dose of BDE-47 causes a reduction of LTP together with changes in postsynaptic proteins involved in synaptic plasticity in the mouse hippocampus.


Asunto(s)
Retardadores de Llama/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Bifenilos Polibrominados/toxicidad , Análisis de Varianza , Animales , Animales Recién Nacidos , Western Blotting , Éteres Difenilos Halogenados , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Células PC12 , Ratas
15.
Toxicol In Vitro ; 45(Pt 1): 60-71, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28506818

RESUMEN

The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters.


Asunto(s)
Anfetaminas/farmacología , Proteínas de Transporte de Neurotransmisores/antagonistas & inhibidores , Psicotrópicos/farmacología , Cocaína/farmacología , Células HEK293 , Humanos , Estructura Molecular , N-Metil-3,4-metilenodioxianfetamina/farmacología , Psicotrópicos/química
16.
Toxicol Sci ; 149(2): 433-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26572663

RESUMEN

Exposure to 50-60 Hz extremely low-frequency electromagnetic fields (ELF-EMFs) has increased considerably over the last decades. Several epidemiological studies suggested that ELF-EMF exposure is associated with adverse health effects, including neurotoxicity. However, these studies are debated as results are often contradictory and the possible underlying mechanisms are unknown. Since the developing nervous system is particularly vulnerable to insults, we investigate effects of chronic, developmental ELF-EMF exposure in vitro. Primary rat cortical neurons received 7 days developmental exposure to 50 Hz block-pulsed ELF-EMF (0-1000 µT) to assess effects on cell viability (Alamar Blue/CFDA assay), calcium homeostasis (single cell fluorescence microscopy), neurite outgrowth (ß(III)-Tubulin immunofluorescent staining), and spontaneous neuronal activity (multi-electrode arrays). Our data demonstrate that cell viability is not affected by developmental ELF-EMF (0-1000 µT) exposure. Depolarization- and glutamate-evoked increases in intracellular calcium concentration ([Ca(2+)]i) are slightly increased at 1 µT, whereas both basal and stimulation-evoked [Ca(2+)]i show a modest inhibition at 1000 µT. Subsequent morphological analysis indicated that neurite length is unaffected up to 100 µT, but increased at 1000 µT. However, neuronal activity appeared largely unaltered following chronic ELF-EMF exposure up to 1000 µT. The effects of ELF-EMF exposure were small and largely restricted to the highest field strength (1000 µT), ie, 10 000 times above background exposure and well above current residential exposure limits. Our combined data therefore indicate that chronic ELF-EMF exposure has only limited (developmental) neurotoxic potential in vitro.


Asunto(s)
Corteza Cerebral/efectos de la radiación , Campos Electromagnéticos , Neuronas/efectos de la radiación , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Neuritas/efectos de la radiación , Ratas , Ratas Wistar
17.
Neurotoxicology ; 57: 194-202, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27720795

RESUMEN

There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to structurally different insecticides or methylmercury on neuronal activity (mean spike rate; MSR). Effects of chronic exposure to α-cypermethrin, endosulfan, carbaryl, chlorpyrifos(-oxon), methylmercury or solvent control [14days exposure, initiated after baseline recording at day in vitro (DIV)7] were studied in five successive recordings between DIV10 and DIV21. The results were compared to effects of acute exposure to these same compounds (activity recorded immediately after the start of exposure after baseline recording at DIV10-11). Chronic 14-day exposure to methylmercury, chlorpyrifos and α-cypermethrin inhibited MSR, all with a lowest-observed effect concentration (LOEC) of 0.1µM, while exposure to endosulfan increased MSR [LOEC: 1µM]. No significant effects were observed for chlorpyrifos-oxon and carbaryl. Similar to the observations in the chronic 14-day exposure studies, MSR was inhibited by acute 30-min exposure to methylmercury, chlorpyrifos, and α-cypermethrin [LOECs: 1µM, 10µM, and 1µM, respectively], whereas endosulfan increased MSR [LOEC: 0.3µM]. While not observed in the chronic 14-day exposure study, acute exposure to chlorpyrifos-oxon and carbaryl resulted in inhibition of MSR [LOECs: 10µM, and100 µM, respectively]. Effects on median interspike intervals (mISI; a measure for neuronal firing pattern) were not detected following chronic 14-day or acute 30-min exposure, except for increased mISI at acute chlorpyrifos and α-cypermethrin exposures at concentrations that also inhibited MSR. These data indicate that the effects of chronic 14-day exposures to methylmercury and insecticides at low concentrations on spontaneous neuronal activity in vitro can be predicted in rapid acute screening studies using mwMEAs.


Asunto(s)
Corteza Cerebral/citología , Neuronas/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Insecticidas/farmacología , Compuestos de Metilmercurio/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
18.
Eur J Pharmacol ; 509(2-3): 97-108, 2005 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-15733544

RESUMEN

Effects of cholinergic drugs on human alpha4beta2 nicotinic acetylcholine receptors expressed in Xenopus oocytes have been investigated in electrophysiological and ligand binding experiments. Atropine, scopolamine, physostigmine, and tacrine combine potentiation of ion current induced by low concentrations of acetylcholine with inhibition of ion current evoked by high concentrations of acetylcholine. Rivastigmine, galanthamine, and dichlorvos cause only inhibition of ion current evoked by low concentrations of acetylcholine. Binding experiments show that the potentiating cholinergic drugs atropine, scopolamine, and physostigmine are competitive ligands of human alpha4beta2 nicotinic acetylcholine receptors. Conversely, the inhibitory cholinergic drugs galanthamine and rivastigmine are non-competitive. The non-competitive drugs are not allosteric, since they do not affect the saturation curve of the radioligand [3H]cytisine. Effects of potentiating cholinergic drugs on nicotinic acetylcholine receptors are consistent with and predicted by a model comprising competitive drug effects at two equivalent agonist recognition sites on the nicotinic acetylcholine receptor combined with non-competitive ion channel block.


Asunto(s)
Colinérgicos/farmacología , Receptores Nicotínicos/fisiología , Acetilcolina/farmacología , Alcaloides/farmacología , Animales , Atropina/farmacología , Azocinas/farmacología , Unión Competitiva/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Diclorvos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Galantamina/farmacología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , Nicotina/farmacología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Fenilcarbamatos/farmacología , Fisostigmina/farmacología , Plásmidos/administración & dosificación , Plásmidos/genética , Quinolizinas/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Rivastigmina , Escopolamina/farmacología , Tacrina/farmacología , Xenopus laevis
19.
Neurotoxicology ; 51: 1-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26344803

RESUMEN

Piperazine derivatives are a class of psychoactive substances applied in prescription medicines like antidepressants as well as in drugs of abuse. They are known to increase brain levels of catecholamines, likely via reversal of reuptake transporters. However, other mechanisms could also contribute to increased neurotransmitter levels, e.g., reduced inhibitory inputs on catecholaminergic neurons. Inhibition of the main inhibitory input in the brain, the GABAergic system, by piperazine derivatives could contribute to increased neurotransmitter levels. Our previous studies support this by demonstrating that 1-(3-chlorophenyl)piperazine (3CPP/mCPP) is an antagonist of the human α1ß2γ2 GABAA receptor (GABAA-R). We therefore investigated the effect of 12 additional piperazine derivatives on the function of the human α1ß2γ2 GABAA-R expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. Tested derivatives included benzylpiperazine (BZP), methylbenzylpiperazines (2/3MBP), phenylpiperazine (PP), methoxyphenylpiperazines (2/3/4MPP/MeOPP), chlorophenylpiperazines (2/4CPP) and fluorophenylpiperazines (4FPP/TFMPP). All derivatives concentration-dependently inhibited the GABA-evoked ion current. Chlorophenylpiperazines were the most potent GABAA-R antagonists; the IC20 value for 1-(2-chlorophenyl)piperazine (2CPP) was 46µM and 2CPP induced a maximum inhibition of ∼ 90% at 1mM. Derivatives can be ranked as follows from highest to lowest potency based on IC20 values: 2CPP>3MPP>4CPP>4MPP>2MBP>3CPP>PP>4FPP>2MPP>TFMPP>3MBP>BZP. This study demonstrates a novel mode of action of piperazine derivatives, i.e., antagonism of the GABAA-R. This mechanism can result in increased catecholamine levels that indirectly contribute to toxicity, e.g., adverse effects during overdoses. Therefore, this important mode of action is not only relevant for therapeutic psychiatric interventions, but could also proof valuable for therapeutic interventions in intoxications.


Asunto(s)
Antagonistas de Receptores de GABA-A/farmacología , Piperazinas/química , Piperazinas/farmacología , Psicotrópicos/farmacología , Receptores de GABA-A/metabolismo , Animales , Diazepam/farmacología , Humanos , Piperazina , Psicotrópicos/química , Xenopus laevis , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA