Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 46(5): 616-24, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22560720

RESUMEN

In E. coli homologous recombination, a filament of RecA protein formed on DNA searches and pairs a homologous sequence within a second DNA molecule with remarkable speed and fidelity. Here, we directly probe the strength of the two-molecule interactions involved in homology search and recognition using dual-molecule manipulation, combining magnetic and optical tweezers. We find that the filament's secondary DNA-binding site interacts with a single strand of the incoming double-stranded DNA during homology sampling. Recognition requires opening of the helix and is strongly promoted by unwinding torsional stress. Recognition is achieved upon binding of both strands of the incoming dsDNA to each of two ssDNA-binding sites in the filament. The data indicate a physical picture for homology recognition in which the fidelity of the search process is governed by the distance between the DNA-binding sites.


Asunto(s)
Escherichia coli/genética , Recombinación Homóloga , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Modelos Genéticos , Pinzas Ópticas , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo , Rec A Recombinasas/fisiología , Especificidad por Sustrato
2.
Biophys J ; 102(10): 2362-71, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22677390

RESUMEN

We present a three-dimensional tracking routine for nondiffraction-limited particles, which significantly reduces pixel bias. Our technique allows for increased resolution compared to that of previous methods, especially at low magnification or at high signal/noise ratio. This enables tracking with nanometer accuracy in a wide field of view and tracking of many particles. To reduce bias induced by pixelation, the tracking algorithm uses interpolation of the image on a circular grid to determine the x-, y-, and z-positions. We evaluate the proposed algorithm by tracking simulated images and compare it to well-known center-of-mass and cross-correlation methods. The final resolution of the described method improves up to an order of magnitude in three dimensions compared to conventional tracking methods. We show that errors in x,y-tracking can seriously affect z-tracking if interpolation is not used. We validate our results with experimental data obtained for conditions matching those used in the simulations. Finally, we show that the increased performance of the proposed algorithm uniquely enables it to extract accurate data for the persistence length and end-to-end distance of 107 DNA tethers in a single experiment.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas/química , Nanotecnología/métodos , Algoritmos , Simulación por Computador , Magnetismo , Pinzas Ópticas , Reproducibilidad de los Resultados , Relación Señal-Ruido
3.
Nucleic Acids Res ; 38(12): 4133-42, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20197317

RESUMEN

All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically constrained dsDNA with single-molecule magnetic tweezers. We find that the hRPA unwinding rate is exponentially dependent on torsion present in the DNA. The unwinding reaction is self-limiting, ultimately removing the driving torsional stress. The process can easily be reverted: release of tension or the application of a rewinding torque leads to protein dissociation and helix rewinding. Based on the force and salt dependence of the in vitro kinetics we anticipate that the unwinding reaction occurs frequently in vivo. We propose that the hRPA unwinding reaction serves to protect and stabilize the dsDNA when it is structurally destabilized by mechanical stresses.


Asunto(s)
ADN/metabolismo , Proteína de Replicación A/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Cinética , Unión Proteica , Cloruro de Sodio/química , Estrés Mecánico
4.
Nano Lett ; 11(12): 5489-93, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22017420

RESUMEN

Single-molecule force-spectroscopy methods such as magnetic and optical tweezers have emerged as powerful tools for the detailed study of biomechanical aspects of DNA-enzyme interactions. As typically only a single molecule of DNA is addressed in an individual experiment, these methods suffer from a low data throughput. Here, we report a novel method for targeted, nonrandom immobilization of DNA-tethered magnetic beads in regular arrays through microcontact printing of DNA end-binding labels. We show that the increase in density due to the arrangement of DNA-bead tethers in regular arrays can give rise to a one-order-of-magnitude improvement in data-throughput in magnetic tweezers experiments. We demonstrate the applicability of this technique in tweezers experiments where up to 450 beads are simultaneously tracked in parallel, yielding statistical data on the mechanics of DNA for 357 molecules from a single experimental run. Our technique paves the way for kilo-molecule force spectroscopy experiments, enabling the study of rare events in DNA-protein interactions and the acquisition of large statistical data sets from individual experimental runs.


Asunto(s)
ADN/química , Imanes/química , Microscopía de Fuerza Atómica/métodos , Fenómenos Biomecánicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Pinzas Ópticas
5.
Nucleic Acids Res ; 37(12): 4089-99, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19429893

RESUMEN

RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA-ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with its biologically most relevant substrate, long ssDNA molecules. We find that RecA ATPase activity is required for the formation of long continuous filaments on ssDNA. These filaments both nucleate and extend with a multimeric unit as indicated by the Hill coefficient of 5.4 for filament nucleation. Disassembly rates of RecA from ssDNA decrease with applied stretching force, corresponding to a mechanism where protein-induced stretching of the ssDNA aids in the disassembly. Finally, we show that RecA-ssDNA filaments can reversibly interconvert between an extended, ATP-bound, and a compressed, ADP-bound state. Taken together, our results demonstrate that ATP hydrolysis has a major influence on the structure and state of RecA filaments on ssDNA.


Asunto(s)
ADN de Cadena Simple/metabolismo , Rec A Recombinasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/química , Cinética , Multimerización de Proteína , Rec A Recombinasas/química
6.
Nat Cell Biol ; 20(6): 710-720, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29802403

RESUMEN

Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.


Asunto(s)
Proliferación Celular , Separación Celular/métodos , Sangre Fetal/citología , Mitosis , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Análisis de la Célula Individual/métodos , Células Madre/metabolismo , Animales , Biomarcadores/metabolismo , Trasplante de Células Madre de Sangre del Cordón Umbilical , Metilación de ADN , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Masculino , Ratones Transgénicos , Fenotipo , Factores de Tiempo , Transcriptoma
7.
PLoS One ; 8(6): e65329, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755219

RESUMEN

The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.


Asunto(s)
ADN Viral/química , Proteínas de Unión al ADN/análisis , Desoxirribonucleasa EcoRI/análisis , Nanotecnología/instrumentación , Pinzas Ópticas , Bacteriófago lambda/química , Proteínas de Unión al ADN/química , Desoxirribonucleasa EcoRI/química , Campos Magnéticos , Nanotecnología/métodos , Conformación de Ácido Nucleico , Unión Proteica , Torque
8.
PLoS One ; 7(8): e41432, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870220

RESUMEN

Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 10(3)) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments.


Asunto(s)
ADN/química , Imagenología Tridimensional , Campos Magnéticos , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA