Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(32): 16105-16110, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31341083

RESUMEN

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.


Asunto(s)
Microbioma Gastrointestinal , Túbulos Renales Proximales/metabolismo , Transducción de Señal , Animales , Aniones , Receptores ErbB/metabolismo , Glutatión/metabolismo , Humanos , Metaboloma , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
2.
Nature ; 508(7497): 531-5, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24670661

RESUMEN

Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , MicroARNs/antagonistas & inhibidores , Contracción Miocárdica/efectos de los fármacos , Animales , Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Células HEK293 , Corazón/efectos de los fármacos , Corazón/fisiología , Corazón/fisiopatología , Humanos , Cinética , Masculino , Ratones , MicroARNs/análisis , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba/genética
3.
Clin Sci (Lond) ; 131(3): 181-195, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057890

RESUMEN

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the Western population, claiming 17000 deaths per year in the United States and affecting 25% of people older than 65 years of age. Contrary to traditional belief, CAVD is not a passive, degenerative disease but rather a dynamic disease, where initial cellular changes in the valve leaflets progress into fibrotic lesions that induce valve thickening and calcification. Advanced thickening and calcification impair valve function and lead to aortic stenosis (AS). Without intervention, progressive ventricular hypertrophy ensues, which ultimately results in heart failure and death. Currently, aortic valve replacement (AVR), surgical or transcatheter, is the only effective therapy to treat CAVD. However, these costly interventions are often delayed until the late stages of the disease. Nonetheless, 275000 are performed per year worldwide, and this is expected to triple by 2050. Given the current landscape, next-generation therapies for CAVD are needed to improve patient outcome and quality of life. Here, we first provide a background on the aortic valve (AV) and the pathobiology of CAVD as well as highlight current directions and future outlook on the development of functional 3D models of CAVD in vitro We then consider an often-overlooked aspect contributing to CAVD: miRNA (mis)regulation. Therapeutics could potentially normalize miRNA levels in the early stages of the disease and may slow its progression or even reverse calcification. We close with a discussion of strategies that would enable the use of miRNA as a therapeutic for CAVD. This focuses on an overview of controlled delivery technologies for nucleic acid therapeutics to the valve or other target tissues.


Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , MicroARNs/metabolismo , Modelos Biológicos , Terapia Molecular Dirigida , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/etiología , Calcinosis/metabolismo , Humanos
4.
J Cell Mol Med ; 19(8): 1994-2005, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25945589

RESUMEN

Arteriogenesis is a complicated process induced by increased local shear-and radial wall-stress, leading to an increase in arterial diameter. This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling cascades via microRNAs. We observed that miR-132/212 expression was significantly upregulated after occlusion of the femoral artery. miR-132/212 knockout (KO) mice display a slower perfusion recovery after hind-limb ischaemia compared to wildtype (WT) mice. Immunohistochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score similar number of branches in miR-132/212 KO mice compared to WT, it can be stimulated with exogenous miR-132, a dominant member of the miR-132/212 family. Moreover, in in vitro pericyte-endothelial co-culture cell assays, overexpression of miR-132 and mir-212 in endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested that miR-132/212 may exert their effects by enhancing the Ras-Mitogen-activated protein kinases MAPK signalling pathway through direct inhibition of Rasa1, and Spred1. The miR-132/212 cluster promotes arteriogenesis by modulating Ras-MAPK signalling via direct targeting of its inhibitors Rasa1 and Spred1.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Isquemia/genética , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis , Proteínas ras/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/farmacología , Isquemia/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Morfogénesis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
5.
Stem Cell Res Ther ; 15(1): 19, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229180

RESUMEN

BACKGROUND: After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge. METHODS: We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming. RESULTS: We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. CONCLUSIONS: Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno , Ácido Ascórbico/farmacología , Antioxidantes/farmacología , Reprogramación Celular , Proteínas de Dominio T Box/genética , Factores de Transcripción MEF2/genética , Miocitos Cardíacos , Vitaminas , Fibroblastos
6.
Biomater Sci ; 12(15): 3866-3881, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910521

RESUMEN

Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation (i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.


Asunto(s)
Criopreservación , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/citología , Supervivencia Celular/efectos de los fármacos , Andamios del Tejido/química , Células Madre Pluripotentes Inducidas/citología , Células Cultivadas , Hidrogeles/química , Hidrogeles/farmacología
7.
Biofabrication ; 15(3)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37343567

RESUMEN

To progress cardiac tissue engineering strategies closer to the clinic, thicker constructs are required to meet the functional need following a cardiac event. Consequently, pre-vascularization of these constructs needs to be investigated to ensure survival and optimal performance of implantable engineered heart tissue. The aim of this research is to investigate the potential of combining extrusion-based bioprinting (EBB) and melt electrowriting for the fabrication of a myocardial construct with a precisely patterned pre-vascular pathway. Gelatin methacryloyl (GelMA) was investigated as a base hydrogel for the respective myocardial and vascular bioinks with collagen, Matrigel and fibrinogen as interpenetrating polymers to support myocardial functionality. Subsequently, extrusion-based printability and viability were investigated to determine the optimal processing parameters for printing into melt electrowritten meshes. Finally, an anatomically inspired vascular pathway was implemented in a dual EBB set-up into melt electrowritten meshes, creating a patterned pre-vascularized myocardial construct. It was determined that a blend of 5% GelMA and 0.8 mg·ml-1collagen with a low crosslinked density was optimal for myocardial cellular arrangement and alignment within the constructs. For the vascular fraction, the optimized formulation consisted of 5% GelMA, 0.8 mg·ml-1collagen and 1 mg·ml-1fibrinogen with a higher crosslinked density, which led to enhanced vascular cell connectivity. Printability assessment confirmed that the optimized bioinks could effectively fill the microfiber mesh while supporting cell viability (∼70%). Finally, the two bioinks were applied using a dual EBB system for the fabrication of a pre-vascular pathway with the shape of a left anterior descending artery within a myocardial construct, whereby the distinct cell populations could be visualized in their respective patterns up to D14. This research investigated the first step towards developing a thick engineered cardiac tissue construct in which a pre-vascularization pathway is fabricated within a myocardial construct.


Asunto(s)
Bioimpresión , Andamios del Tejido , Ingeniería de Tejidos , Gelatina , Colágeno , Hidrogeles , Impresión Tridimensional
8.
ACS Nano ; 17(23): 23466-23477, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982378

RESUMEN

Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure.


Asunto(s)
Insuficiencia Cardíaca , Nanopartículas , Humanos , Liposomas , ARN Mensajero/genética , Péptidos
9.
J Vis Exp ; (193)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971448

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are of paramount importance for human cardiac disease modeling and therapeutics. We recently published a cost-effective strategy for the massive expansion of hiPSC-CMs in two dimensions (2D). Two major limitations are cell immaturity and a lack of three-dimensional (3D) arrangement and scalability in high-throughput screening (HTS) platforms. To overcome these limitations, the expanded cardiomyocytes form an ideal cell source for the generation of 3D cardiac cell culture and tissue engineering techniques. The latter holds great potential in the cardiovascular field, providing more advanced and physiologically relevant HTS. Here, we describe an HTS-compatible workflow with easy scalability for the generation, maintenance, and optical analysis of cardiac spheroids (CSs) in a 96-well-format. These small CSs are essential to fill the gap present in current in vitro disease models and/or generation for 3D tissue engineering platforms. The CSs present a highly structured morphology, size, and cellular composition. Furthermore, hiPSC-CMs cultured as CSs display increased maturation and several functional features of the human heart, such as spontaneous calcium handling and contractile activity. By automatization of the complete workflow, from the generation of CSs to functional analysis, we increase intra- and inter-batch reproducibility as demonstrated by high-throughput (HT) imaging and calcium handling analysis. The described protocol allows modeling of cardiac diseases and assessing drug/therapeutic effects at the single-cell level within a complex 3D cell environment in a fully automated HTS workflow. In addition, the study describes a straightforward procedure for long-term preservation and biobanking of whole-spheroids, thereby providing researchers the opportunity to create next-generation functional tissue storage. HTS combined with long-term storage will substantially contribute to translational research in a wide range of areas, including drug discovery and testing, regenerative medicine, and the development of personalized therapies.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes Inducidas , Humanos , Ensayos Analíticos de Alto Rendimiento , Calcio/farmacología , Bancos de Muestras Biológicas , Reproducibilidad de los Resultados , Miocitos Cardíacos , Diferenciación Celular/fisiología
10.
J Cell Mol Med ; 16(10): 2379-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22348515

RESUMEN

Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA-155 (miR-155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre-miR-155, anti-miR-155 or control-miR (ctrl-miR), followed by scratch- and transwell-assays. These functional assays displayed that miR-155 over-expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR-155 transfected cells was collected and zymography analysis showed a significant decrease in MMP-2 and MMP-9 activities. The predicted 3'-UTR of MMP-16, an activator of MMP-2 and -9, was cloned into the pMIR-REPORT vector and luciferase assays were performed. Introduction of miR-155 significantly reduced luciferase activity which could be abolished by cotransfection with anti-miR-155 or target site mutagenesis. By using MMP-16 siRNA to reduce MMP-16 levels or by using an MMP-16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP-16, miR-155 efficiently inhibits cell migration via a reduction in MMP-2 and -9 activities. Our study shows that miR-155 might be used to improve local retention of hCMPCs after intramyocardial delivery.


Asunto(s)
Movimiento Celular , Metaloproteinasa 16 de la Matriz/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Células Madre/metabolismo , Western Blotting , Proliferación Celular , Células Cultivadas , Clonación Molecular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección
11.
Mol Ther Methods Clin Dev ; 25: 3-16, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35317048

RESUMEN

The human heart has limited regenerative capacity. Therefore, patients often progress to heart failure after ischemic injury, despite advances in reperfusion therapies generally decreasing mortality. Depending on its glycosylation state, Follistatin-like 1 (FSTL1) has been shown to increase cardiomyocyte (CM) proliferation, decrease CM apoptosis, and prevent cardiac rupture in animal models of ischemic heart disease. To explore its therapeutic potential, we used a human in vitro model of cardiac ischemic injury with human induced pluripotent stem cell-derived CMs (iPSC-CMs) and assessed regenerative effects of two differently glycosylated variants of human FSTL1. Furthermore, we investigated the FSTL1-mediated interplay between human cardiac fibroblasts (cFBs) and iPSC-CMs in hypoxia. Both FSTL1 variants increased viability, while only hypo-glycosylated FSTL1 increased CM proliferation post-hypoxia. Human fetal cardiac fibroblasts (fcFBs) expressed and secreted FSTL1 under normoxic conditions, while FSTL1 secretion increased by iPSC-cFBs upon hypoxia but decreased in iPSC-CMs. Co-culture of iPSC-CMs and cFBs increased FSTL1 secretion compared with cFB mono-culture. Taken together, we confirm that FSTL1 induces iPSC-CM proliferation in a human cardiac in vitro hypoxia damage model. Furthermore, we show hypoxia-related FSTL1 secretion by human cFBs and indications for FSTL1-mediated intercellular communication between cardiac cell types in response to hypoxic conditions.

12.
Stem Cell Res Ther ; 13(1): 531, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575473

RESUMEN

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor ß/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS: Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Diferenciación Celular , Mitocondrias/metabolismo
13.
Stem Cells Transl Med ; 11(10): 1040-1051, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36018047

RESUMEN

The development of new cardioprotective approaches using in vivo models of ischemic heart disease remains challenging as differences in cardiac physiology, phenotype, and disease progression between humans and animals influence model validity and prognostic value. Furthermore, economical and ethical considerations have to be taken into account, especially when using large animal models with relevance for conducting preclinical studies. The development of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has opened new opportunities for in vitro studies on cardioprotective compounds. However, the immature cellular phenotype of iPSC-CMs remains a roadblock for disease modeling. Here, we show that metabolic maturation renders the susceptibility of iPSC-CMs to hypoxia further toward a clinically representative phenotype. iPSC-CMs cultured in a conventional medium did not show significant cell death after exposure to hypoxia. In contrast, metabolically matured (MM) iPSC-CMs showed inhibited mitochondrial respiration after exposure to hypoxia and increased cell death upon increased durations of hypoxia. Furthermore, we confirmed the applicability of MM iPSC-CMs for in vitro studies of hypoxic damage by validating the known cardioprotective effect of necroptosis inhibitor necrostatin-1. Our results provide important steps to improving and developing valid and predictive human in vitro models of ischemic heart disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Isquemia Miocárdica , Animales , Humanos , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Hipoxia/metabolismo
14.
J Cell Mol Med ; 15(7): 1474-82, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20550618

RESUMEN

To improve regeneration of the injured myocardium, cardiomyocyte progenitor cells (CMPCs) have been put forward as a potential cell source for transplantation therapy. Although cell transplantation therapy displayed promising results, many issues need to be addressed before fully appreciating their impact. One of the hurdles is poor graft-cell survival upon injection, thereby limiting potential beneficial effects. Here, we attempt to improve CMPCs survival by increasing microRNA-155 (miR-155) levels, potentially to improve engraftment upon transplantation. Using quantitative PCR, we observed a 4-fold increase of miR-155 when CMPCs were exposed to hydrogen-peroxide stimulation. Flow cytometric analysis of cell viability, apoptosis and necrosis showed that necrosis is the main cause of cell death. Overexpressing miR-155 in CMPCs revealed that miR-155 attenuated necrotic cell death by 40 ± 2.3%via targeting receptor interacting protein 1 (RIP1). In addition, inhibiting RIP1, either by pre-incubating the cells with a RIP1 specific inhibitor, Necrostatin-1 or siRNA mediated knockdown, reduced necrosis by 38 ± 2.5% and 33 ± 1.9%, respectively. Interestingly, analysing gene expression using a PCR-array showed that increased miR-155 levels did not change cell survival and apoptotic related gene expression. By targeting RIP1, miR-155 repressed necrotic cell death of CMPCs, independent of activation of Akt pro-survival pathway. MiR-155 provides the opportunity to block necrosis, a conventionally thought non-regulated process, and might be a potential novel approach to improve cell engraftment for cell therapy.


Asunto(s)
Muerte Celular/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/fisiología , Necrosis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Células Madre/fisiología , Supervivencia Celular , Células Cultivadas , Humanos , Imidazoles/metabolismo , Indoles/metabolismo , MicroARNs/genética , Miocitos Cardíacos/citología , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal/fisiología , Células Madre/citología
15.
Arterioscler Thromb Vasc Biol ; 30(4): 859-68, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20081117

RESUMEN

OBJECTIVE: To improve regeneration of the injured myocardium, it is necessary to enhance the intrinsic capacity of the heart to regenerate itself and/or replace the damaged tissue by cell transplantation. Cardiomyocyte progenitor cells (CMPCs) are a promising cell population, easily expanded and efficiently differentiated into beating cardiomyocytes. Recently, several studies have demonstrated that microRNAs (miRNAs) are important for stem cell maintenance and differentiation via translational repression. We hypothesize that miRNAs are also involved in proliferation/differentiation of the human CMPCs in vitro. METHODS AND RESULTS: Human fetal CMPCs were isolated, cultured, and efficiently differentiated into beating cardiomyocytes. miRNA expression profiling demonstrated that muscle-specific miR-1 and miR-499 were highly upregulated in differentiated cells. Transient transfection of miR-1 and -499 in CMPC reduced proliferation rate by 25% and 15%, respectively, and enhanced differentiation into cardiomyocytes in human CMPCs and embryonic stem cells, likely via the repression of histone deacetylase 4 or Sox6. Histone deacetylase 4 and Sox6 protein levels were reduced, and small interference RNA (siRNA)-mediated knockdown of Sox6 strongly induced myogenic differentiation. CONCLUSIONS: miRNAs regulate the proliferation of human CMPC and their differentiation into cardiomyocytes. By modulating miR-1 and -499 expression levels, human CMPC function can be altered and differentiation directed, thereby enhancing cardiomyogenic differentiation.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Células Madre Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Miocitos Cardíacos/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Edad Gestacional , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Transcripción Genética , Transfección , Regulación hacia Arriba
16.
Curr Opin Pharmacol ; 57: 49-59, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338891

RESUMEN

The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Presión Sanguínea , Homeostasis , Transducción de Señal
17.
Nanoscale ; 13(48): 20451-20461, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34817483

RESUMEN

Differential expression of microRNAs (miRNAs) plays a role in many diseases, including cancer and cardiovascular diseases. Potentially, miRNAs could be targeted with miRNA-therapeutics. Sustained delivery of these therapeutics remains challenging. This study couples miR-mimics to PEG-peptide gold nanoparticles (AuNP) and loads these AuNP-miRNAs in an injectable, shear thinning, self-assembling polymer nanoparticle (PNP) hydrogel drug delivery platform to improve delivery. Spherical AuNPs coated with fluorescently labelled miR-214 are loaded into an HPMC-PEG-b-PLA PNP hydrogel. Release of AuNP/miRNAs is quantified, AuNP-miR-214 functionality is shown in vitro in HEK293 cells, and AuNP-miRNAs are tracked in a 3D bioprinted human model of calcific aortic valve disease (CAVD). Lastly, biodistribution of PNP-AuNP-miR-67 is assessed after subcutaneous injection in C57BL/6 mice. AuNP-miRNA release from the PNP hydrogel in vitro demonstrates a linear pattern over 5 days up to 20%. AuNP-miR-214 transfection in HEK293 results in 33% decrease of Luciferase reporter activity. In the CAVD model, AuNP-miR-214 are tracked into the cytoplasm of human aortic valve interstitial cells. Lastly, 11 days after subcutaneous injection, AuNP-miR-67 predominantly clears via the liver and kidneys, and fluorescence levels are again comparable to control animals. Thus, the PNP-AuNP-miRNA drug delivery platform provides linear release of functional miRNAs in vitro and has potential for in vivo applications.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Animales , Oro , Células HEK293 , Humanos , Hidrogeles , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Distribución Tisular
18.
Adv Mater ; 33(27): e2008517, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34048090

RESUMEN

Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.


Asunto(s)
Criopreservación , Ingeniería de Tejidos , Animales , Corazón , Miocardio
19.
Front Cardiovasc Med ; 8: 592362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816571

RESUMEN

Compromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identified as a regulator of cardiac function in the failing mouse heart, and pharmaceutically inhibition of miR-132 is beneficial for heart failure. In this study, we further investigated the molecular mechanisms of miR-132/212 in modulating cardiomyocyte contractility in the context of the pathological progression of heart failure. We found that upregulated miR-132/212 expressions in all examined hypertrophic heart failure mice models. The overexpression of miR-132/212 prolongs calcium decay in isolated neonatal rat cardiomyocytes, whereas cardiomyocytes isolated from miR-132/212 KO mice display enhanced contractility in comparison to wild type controls. In response to chronic pressure-overload, miR-132/212 KO mice exhibited a blunted deterioration of cardiac function. Using a combination of biochemical approaches and in vitro assays, we confirmed that miR-132/212 regulates SERCA2a by targeting the 3'-end untranslated region of SERCA2a. Additionally, we also confirmed PTEN as a direct target of miR-132/212 and potentially participates in the cardiac response to miR132/212. In end-stage heart failure patients, miR-132/212 is upregulated and correlates with reduced SERCA2a expression. The up-regulation of miR-132/212 in heart failure impairs cardiac contractile function by targeting SERCA2a, suggesting that pharmaceutical inhibition of miR-132/212 might be a promising therapeutic approach to promote cardiac function in heart failure patients.

20.
Adv Healthc Mater ; 9(1): e1900775, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603288

RESUMEN

Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.


Asunto(s)
Insuficiencia Cardíaca/terapia , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Matriz Extracelular/química , Humanos , Hidrogeles/química , Miocardio/citología , Miocardio/metabolismo , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA