Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Glia ; 69(11): 2752-2766, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343377

RESUMEN

We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells. To investigate the role of these DCL-positive astrocytes in circadian rhythmicity, we have used transgenic mice expressing doxycycline-induced short-hairpin (sh) RNA's targeting DCL mRNA (DCL knockdown mice). Compared with littermate wild type (WT) controls, DCL-knockdown mice exhibit significant shorter circadian rest-activity periods in constant darkness and adjusted significantly faster to a jet-lag protocol. As DCL-positive astrocytes are closely associated with AVP-positive cells, we analyzed AVP expression in DCL-knockdown mice and in their WT littermates by 3D reconstructions and transmission electron microscopy (TEM). We found significantly higher numbers of AVP-positive cells with increased volume and more intensity in DCL-knockdown mice. We found alterations in the numbers of dense core vesicle-containing neurons at ZT8 and ZT20 suggesting that the peak and trough of neuropeptide biosynthesis is dampened in DCL-knockdown mice compared to WT littermates. Together, our data suggest an important role for the astrocytic plasticity in the regulation of circadian rhythms and point to the existence of a specific DCL+ astrocyte-AVP+ neuronal network located in the dorsal SCN implicated in AVP biosynthesis.


Asunto(s)
Astrocitos , Ritmo Circadiano , Animales , Astrocitos/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Dominio Doblecortina , Quinasas Similares a Doblecortina , Ratones , Núcleo Supraquiasmático/metabolismo , Vasopresinas/metabolismo
2.
Glia ; 66(8): 1591-1610, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575063

RESUMEN

Axonal mRNA transport and local protein synthesis are crucial for peripheral axon regeneration. To date, it remains unclear how ribosomes localize to axons. They may be co-transported with mRNAs or, as suggested by recent studies, transferred from Schwann cells (SC). Here, we generated transgenic "RiboTracker" mice expressing tdTomato-tagged ribosomal protein L4 in specific cell types when crossed with Cre lines. Two neuronal RiboTracker-Cre lines displayed extremely low levels of axonal L4-tdTomato-positive ribosomes. In contrast, two glial RiboTracker-Cre lines revealed tagged ribosomes in sciatic nerve (SN) axons with increasing amounts after injury. Furthermore, non-RiboTracker dorsal root ganglia co-cultured with L4-tdTomato-expressing SCs displayed tagged ribosomes in axons. These data provide unequivocal evidence that SN axons receive ribosomes from SCs upon injury and indicate that glial cells are the main source of axonal ribosomes.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/metabolismo , Neuroglía/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo
3.
Nat Rev Neurosci ; 13(7): 507-14, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22714021

RESUMEN

Multiple sclerosis (MS) is considered to be an autoimmune, inflammatory disease of the CNS. In most patients, the disease follows a relapsing-remitting course and is characterized by dynamic inflammatory demyelinating lesions in the CNS. Although on the surface MS may appear consistent with a primary autoimmune disease, questions have been raised as to whether inflammation and/or autoimmunity are really at the root of the disease, and it has been proposed that MS might in fact be a degenerative disorder. We argue that MS may be an 'immunological convolution' between an underlying primary degenerative disorder and the host's aberrant immune response. To better understand this disease, we might need to consider non-inflammatory primary progressive MS as the 'real' MS, with inflammatory forms reflecting secondary, albeit very important, reactions.


Asunto(s)
Inflamación/complicaciones , Esclerosis Múltiple , Enfermedades Neurodegenerativas/complicaciones , Progresión de la Enfermedad , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/etiología , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/inmunología
4.
J Neurosci ; 35(3): 1136-48, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609628

RESUMEN

Approaches to stimulate remyelination may lead to recovery from demyelinating injuries and protect axons. One such strategy is the activation of immune cells with clinically used medications, since a properly directed inflammatory response can have healing properties through mechanisms such as the provision of growth factors and the removal of cellular debris. We previously reported that the antifungal medication amphotericin B is an activator of circulating monocytes, and their tissue-infiltrated counterparts and macrophages, and of microglia within the CNS. Here, we describe that amphotericin B activates these cells through engaging MyD88/TRIF signaling. When mice were subjected to lysolecithin-induced demyelination of the spinal cord, systemic injections of nontoxic doses of amphotericin B and another activator, macrophage colony-stimulating factor (MCSF), further elevated the representation of microglia/macrophages at the site of injury. Treatment with amphotericin B, particularly in combination with MCSF, increased the number of oligodendrocyte precursor cells and promoted remyelination within lesions; these pro-regenerative effects were mitigated in mice treated with clodronate liposomes to reduce circulating monocytes and tissue-infiltrated macrophages. Our results have identified candidates among currently used medications as potential therapies for the repair of myelin.


Asunto(s)
Anfotericina B/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Monocitos/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Anfotericina B/uso terapéutico , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Enfermedades Desmielinizantes/inducido químicamente , Factor Estimulante de Colonias de Macrófagos/uso terapéutico , Macrófagos/fisiología , Ratones , Microglía/fisiología , Monocitos/fisiología , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología
5.
Mol Biol Rep ; 43(6): 495-507, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27115494

RESUMEN

Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia-axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia-axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte-axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process.


Asunto(s)
Esclerosis Múltiple/metabolismo , Ribosomas/metabolismo , Vesículas Transportadoras/metabolismo , Anciano , Animales , Axones/metabolismo , Axones/patología , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple/patología , Neuroglía/metabolismo , Neuroglía/patología , Transporte de Proteínas , Ratas Endogámicas Lew , Células de Schwann/metabolismo , Células de Schwann/patología , Nervio Ciático/patología
6.
EMBO J ; 30(22): 4665-77, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21964071

RESUMEN

Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of ß-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of ß-actin mRNA, and introducing GFP with the 3'UTR of ß-actin mRNA depletes axons of endogenous ß-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons. Consistent with limited levels of ZBP1 protein in adult neurons, mice heterozygous for the ZBP1 gene are haploinsufficient for axonal transport of ß-actin and GAP-43 mRNAs and for regeneration of peripheral nerve. Exogenous ZBP1 can rescue the RNA transport deficits, but the axonal growth deficit is only rescued if the transported mRNAs are locally translated. These data support a direct role for ZBP1 in transport and translation of mRNA cargos in axonal regeneration in vitro and in vivo.


Asunto(s)
Actinas/genética , Axones/fisiología , Glicoproteínas/metabolismo , Regeneración Nerviosa/fisiología , ARN Mensajero/metabolismo , Regiones no Traducidas 3'/genética , Actinas/metabolismo , Animales , Transporte Axonal/genética , Proliferación Celular , Células Cultivadas , Proteína GAP-43/deficiencia , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Conos de Crecimiento/fisiología , Ratones , Ratones Endogámicos C57BL , Transporte de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
7.
Muscle Nerve ; 50(2): 262-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24282080

RESUMEN

INTRODUCTION: Skin-derived precursor cells (SKPs) are neural crest progenitor cells that can attain a Schwann cell-like phenotype through in vitro techniques (SKP-SCs). We hypothesized that SKP-SCs could produce mature myelin and, in doing so, facilitate the recovery of a focal demyelination injury. METHODS: We unilaterally injected DiI-labeled, green fluorescent protein (GFP)-producing SKP-SCs into the tibial nerves of 10 adult Lewis rats (with contralateral media control), 9 days after bilateral doxorubicin injury (0.38 µg). Tibial compound motor action potentials (CMAPs) were followed for 57 days. A separate morphometric cohort also included a Schwann cell injection group. RESULTS: SKP-injected nerves recovered fastest in terms of electrophysiology and morphometry. SKP-SCs formed morphologically mature myelin, accounting for 15.3 ± 5.3% of the total myelin in SKP-SC-injected nerves. CONCLUSIONS: SKP-SCs are robustly capable of myelination. They improve the recovery of a focal tibial nerve demyelination model by myelinating a measured percentage of axons.


Asunto(s)
Trasplante de Células Madre de Sangre Periférica/métodos , Polirradiculoneuropatía/cirugía , Células de Schwann/fisiología , Piel/citología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Antibióticos Antineoplásicos/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Doxorrubicina/toxicidad , Potenciales Evocados Motores/fisiología , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas de Neurofilamentos/metabolismo , Polirradiculoneuropatía/inducido químicamente , Polirradiculoneuropatía/fisiopatología , Nódulos de Ranvier/patología , Nódulos de Ranvier/ultraestructura , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Células de Schwann/ultraestructura
8.
Mol Cell Neurosci ; 50(1): 103-12, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22735691

RESUMEN

Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a lentiviral vector encoding NGF (NGF-SCs). Transplantation of NGF-SCs in a rat sciatic nerve transection/repair model led to significant increase of NGF levels 2weeks after injury and correspondingly to substantial improvement in axonal regeneration. Numbers of NF200, ChAT and CGRP-positive axon profiles, as well as the gastrocnemius muscle weights, were significantly higher in the NGF-Schwann cell group compared to the animals that received control SCs transduced with a lentiviral vector encoding GFP (GFP-SCs). Comparison with other models of NGF application signifies the important role of this neurotrophin during the early stages of regeneration, and supports the importance of developing combined gene and cell therapy for peripheral nerve repair.


Asunto(s)
Factor de Crecimiento Nervioso/genética , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann/trasplante , Animales , Células Cultivadas , Terapia Genética , Masculino , Factor de Crecimiento Nervioso/metabolismo , Ratas , Ratas Endogámicas Lew , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción Genética
9.
J Neurochem ; 122(3): 501-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22607199

RESUMEN

Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2 weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2 weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Factor de Crecimiento Nervioso/metabolismo , Neurotrofina 3/metabolismo , Neuropatía Ciática/metabolismo , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Lateralidad Funcional , Masculino , Factor de Crecimiento Nervioso/biosíntesis , Factor de Crecimiento Nervioso/genética , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Proteínas de Neurofilamentos/metabolismo , Neurotrofina 3/genética , Ratas , Ratas Endogámicas Lew , Células de Schwann/metabolismo , Células de Schwann/trasplante , Neuropatía Ciática/fisiopatología , Neuropatía Ciática/cirugía , Factores de Tiempo , Transducción Genética/métodos , Trasplante Isogénico/métodos
10.
Glia ; 59(10): 1529-39, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21656857

RESUMEN

Recently, we showed that Schwann cells transfer ribosomes to injured axons. Here, we demonstrate that Schwann cells transfer ribosomes to regenerating axons in vivo. For this, we used lentiviral vector-mediated expression of ribosomal protein L4 and eGFP to label ribosomes in Schwann cells. Two approaches were followed. First, we transduced Schwann cells in vivo in the distal trunk of the sciatic nerve after a nerve crush. Seven days after the crush, 12% of regenerating axons contained fluorescent ribosomes. Second, we transduced Schwann cells in vitro that were subsequently injected into an acellular nerve graft that was inserted into the sciatic nerve. Fluorescent ribosomes were detected in regenerating axons up to 8 weeks after graft insertion. Together, these data indicate that regenerating axons receive ribosomes from Schwann cells and, furthermore, that Schwann cells may support local axonal protein synthesis by transferring protein synthetic machinery and mRNAs to these axons.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Ribosomas/metabolismo , Células de Schwann/ultraestructura , Neuropatía Ciática/cirugía , Animales , Axones/metabolismo , Axones/patología , Transporte Biológico/fisiología , Lateralidad Funcional , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Compresión Nerviosa/métodos , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Endogámicas Lew , Ribosomas/ultraestructura , Células de Schwann/patología , Células de Schwann/trasplante , Neuropatía Ciática/etiología , Factores de Tiempo , Transducción Genética/métodos
11.
Eur J Neurosci ; 31(6): 994-1005, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20377614

RESUMEN

Current treatment regimes for a variety of mental disorders involve various selective serotonin reuptake inhibitors such as Fluoxetine (Prozac). Although these drugs may 'manage' the patient better, there has not been a significant change in the treatment paradigm over the years and neither have the outcomes improved. There is also considerable debate as to the effectiveness of various selective serotonin reuptake inhibitors and their potential side-effects on neuronal architecture and function. In this study, using mammalian cortical neurons, a dorsal root ganglia cell line (F11 cells) and identified Lymnaea stagnalis neurons, we provide the first direct and unequivocal evidence that clinically relevant concentrations of Fluoxetine induce growth cone collapse and neurite retraction of both serotonergic and non-serotonergic neurons alike in a dose-dependent manner. Using intracellular recordings and calcium imaging techniques, we further demonstrate that the mechanism underlying Fluoxetine-induced effects on neurite retraction from Lymnaea neurons may involve lowering of intracellular calcium and a subsequent retardation of growth cone cytoskeleton. Using soma-soma synapses between identified presynaptic and postsynaptic Lymnaea neurons, we provide further direct evidence that clinically used concentrations of Fluoxetine also block synaptic transmission and synapse formation between cholinergic neurons. Our study raises alarms over potentially devastating side-effects of this antidepressant drug on neurite outgrowth and synapse formation in a developing/regenerating brain. Our data also demonstrate that drugs such as Fluoxetine may not just affect communication between serotonergic neurons but that the detrimental effects are widespread and involve neurons of various phenotypes from both vertebrate and invertebrate species.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Fluoxetina/farmacología , Conos de Crecimiento/efectos de los fármacos , Lymnaea/citología , Neuritas/efectos de los fármacos , Neuronas/citología , Actinas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Medios de Cultivo Condicionados/farmacología , Relación Dosis-Respuesta a Droga , Microscopía Confocal , Inhibición Neural/efectos de los fármacos , Neuritas/fisiología , Neuronas/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos
12.
J Neurosci ; 28(43): 11024-9, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18945910

RESUMEN

Schwann cells play pivotal roles in the development and maintenance of the peripheral nervous system. Here, we show that intact sciatic nerve axons of mice contain a small population of ribosomes, which increases by several orders of magnitude when axons are desomatized (severed from their cell bodies). We furthermore demonstrate, using the Wallerian degeneration slow mouse as a model, that Schwann cells transfer polyribosomes to desomatized axons. These data indicate that Schwann cells have the propensity to control axonal protein synthesis by supplying ribosomes on local basis.


Asunto(s)
Axones/fisiología , Neuroglía/citología , Ribosomas/metabolismo , Células de Schwann/fisiología , Animales , Axones/ultraestructura , Transporte Biológico/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Electrónica de Transmisión/métodos , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Neuroglía/fisiología , Polirribosomas/metabolismo , Neuropatía Ciática/genética , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Transfección/métodos
13.
Neuron ; 40(6): 1095-104, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14687545

RESUMEN

Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.


Asunto(s)
Transporte Axonal/fisiología , Carioferinas/biosíntesis , Degeneración Retrógrada/metabolismo , Neuropatía Ciática/metabolismo , Animales , Células Cultivadas , Humanos , Carioferinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Degeneración Retrógrada/genética , Neuropatía Ciática/genética , Regulación hacia Arriba/fisiología
14.
J Neurosci ; 26(1): 152-7, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399682

RESUMEN

Local protein synthesis plays an essential role in the regulation of various aspects of axonal and dendritic function in adult neurons. At present, however, there is no direct evidence that local protein translation is functionally contributing to neuronal outgrowth. Here, we identified the mRNA encoding the actin-binding protein beta-thymosin as one of the most abundant transcripts in neurites of outgrowing neurons in culture. Beta-thymosin mRNA is not evenly distributed in neurites, but appears to accumulate at distinct sites such as turning points and growth cones. Using double-stranded RNA knockdown, we show that reducing beta-thymosin mRNA levels results in a significant increase in neurite outgrowth, both in neurites of intact cells and in isolated neurites. Together, our data demonstrate that local synthesis of beta-thymosin is functionally involved in regulating neuronal outgrowth.


Asunto(s)
Aumento de la Célula , Proteínas de Microfilamentos/biosíntesis , Neuritas/fisiología , Timosina/análogos & derivados , Timosina/biosíntesis , Secuencia de Aminoácidos , Animales , Células Cultivadas , Lymnaea , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Datos de Secuencia Molecular , Timosina/genética
15.
J Neurosci ; 26(2): 518-29, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407549

RESUMEN

In contrast to classical transmitters, the detailed structures and cellular and synaptic actions of neuropeptides are less well described. Peptide mass profiling of single identified neurons of the mollusc Lymnaea stagnalis indicated the presence of 17 abundant neuropeptides in the cardiorespiratory neuron, visceral dorsal 1 (VD1), and a subset of 14 peptides in its electrically coupled counterpart, right parietal dorsal 2. Altogether, based on this and previous work, we showed that the high number of peptides arises from the expression and processing of four distinct peptide precursor proteins, including a novel one. Second, we established a variety of posttranslational modifications of the generated peptides, including phosphorylation, disulphide linkage, glycosylation, hydroxylation, N-terminal pyroglutamylation, and C-terminal amidation. Specific synapses between VD1 and its muscle targets were formed, and their synaptic physiology was investigated. Whole-cell voltage-clamp analysis of dissociated heart muscle cells revealed, as tested for a selection of representative family members and their modifications, that the peptides of VD1 exhibit convergent activation of a high-voltage-activated Ca current. Moreover, the differentially glycosylated and hydroxylated alpha2 peptides were more potent than the unmodified alpha2 peptide in enhancing these currents. Together, this study is the first to demonstrate that single neurons exhibit such a complex pattern of peptide gene expression, precursor processing, and differential peptide modifications along with a remarkable degree of convergence of neuromodulatory actions. This study thus underscores the importance of a detailed mass spectrometric analysis of neuronal peptide content and peptide modifications related to neuromodulatory function.


Asunto(s)
Lymnaea/química , Neuronas/química , Neuropéptidos/análisis , Proteómica , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/fisiología , Canales de Calcio Tipo L/metabolismo , Células Cultivadas/fisiología , Cromatografía Líquida de Alta Presión , Técnicas de Cocultivo , Ganglios de Invertebrados/citología , Expresión Génica , Glicosilación , Hidroxilación , Transporte Iónico/efectos de los fármacos , Lymnaea/citología , Datos de Secuencia Molecular , Peso Molecular , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/fisiología , Técnicas de Placa-Clamp , Fragmentos de Péptidos/análisis , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Fosforilación , Precursores de Proteínas/análisis , Procesamiento Proteico-Postraduccional , ARN Mensajero/análisis , Análisis de Secuencia de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
J Neurosci ; 25(46): 10617-26, 2005 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-16291934

RESUMEN

Acetylcholine (ACh) is a neurotransmitter commonly found in all animal species. It was shown to mediate fast excitatory and inhibitory neurotransmission in the molluscan CNS. Since early intracellular recordings, it was shown that the receptors mediating these currents belong to the family of neuronal nicotinic acetylcholine receptors and that they can be distinguished on the basis of their pharmacology. We previously identified 12 Lymnaea cDNAs that were predicted to encode ion channel subunits of the family of the neuronal nicotinic acetylcholine receptors. These Lymnaea nAChRs can be subdivided in groups according to the residues supposedly contributing to the selectivity of ion conductance. Functional analysis in Xenopus oocytes revealed that two types of subunits with predicted distinct ion selectivities form homopentameric nicotinic ACh receptor (nAChR) subtypes conducting either cations or anions. Phylogenetic analysis of the nAChR gene sequences suggests that molluscan anionic nAChRs probably evolved from cationic ancestors through amino acid substitutions in the ion channel pore, a mechanism different from acetylcholine-gated channels in other invertebrates.


Asunto(s)
Lymnaea/clasificación , Lymnaea/genética , Subunidades de Proteína/fisiología , Receptores Nicotínicos/clasificación , Receptores Nicotínicos/fisiología , Secuencia de Aminoácidos , Animales , Aniones , Cationes , Femenino , Lymnaea/metabolismo , Datos de Secuencia Molecular , Moluscos , Filogenia , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Receptores Nicotínicos/genética , Xenopus
17.
J Neurosci ; 25(4): 778-91, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15673657

RESUMEN

Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here, we used axons purified from cultures of injury-conditioned adult dorsal root ganglion (DRG) neurons and proteomics methodology to identify axonally synthesized proteins. Reverse transcription (RT)-PCR from axonal preparations was used to confirm that the mRNA for each identified protein extended into the DRG axons. Proteins and the encoding mRNAs for the cytoskeletal proteins beta-actin, peripherin, vimentin, gamma-tropomyosin 3, and cofilin 1 were present in the axonal preparations. In addition to the cytoskeletal elements, several heat shock proteins (HSP27, HSP60, HSP70, grp75, alphaB crystallin), resident endoplasmic reticulum (ER) proteins (calreticulin, grp78/BiP, ERp29), proteins associated with neurodegenerative diseases (ubiquitin C-terminal hydrolase L1, rat ortholog of human DJ-1/Park7, gamma-synuclein, superoxide dismutase 1), anti-oxidant proteins (peroxiredoxins 1 and 6), and metabolic proteins (e.g., phosphoglycerate kinase 1 (PGK 1), alpha enolase, aldolase C/Zebrin II) were included among the axonally synthesized proteins. Detection of the mRNAs encoding each of the axonally synthesized proteins identified by mass spectrometry in the axonal compartment indicates that the DRG axons have the potential to synthesize a complex population of proteins. Local treatment of the DRG axons with NGF or BDNF increased levels of cytoskeletal mRNAs into the axonal compartment by twofold to fivefold but had no effect on levels of the other axonal mRNAs studied. Neurotrophins selectively increased transport of beta-actin, peripherin, and vimentin mRNAs from the cell body into the axons rather than changing transcription or mRNA survival in the axonal compartment.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , ARN Mensajero/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/fisiología , Células Cultivadas , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Factor de Crecimiento Nervioso/fisiología , Regeneración Nerviosa/fisiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas Aferentes/metabolismo , Biosíntesis de Proteínas , Transporte de ARN , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones
18.
Trends Neurosci ; 25(8): 400-4, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12127756

RESUMEN

The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal -- yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins. To dispel this lingering neglect, we now present the wealth of recent observations bearing on this central idea, and consider their impact on our understanding of the biology of the neuron. We demonstrate that extrasomatic translation sites, which are now well recognized in dendrites, are also present in axonal and presynaptic compartments.


Asunto(s)
Compartimento Celular/fisiología , Sistema Nervioso Central/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Terminales Presinápticos/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Animales , Sistema Nervioso Central/citología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Humanos , Plasticidad Neuronal/fisiología , Terminales Presinápticos/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura
19.
J Neurotrauma ; 23(3-4): 295-308, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16629617

RESUMEN

Protein synthesis in dendrites has become an accepted cellular mechanism that contributes to activity-dependent responses in the post-synaptic neuron. Although it was argued that protein synthesis does not occur in axons, early studies from a number of groups provided evidence for the presence of RNAs and active protein synthesis machinery in both invertebrate and vertebrate axons. Work over the past decade has confirmed these early findings and has proven the capability of axons to locally synthesize some of their own proteins. The functional significance of this localized protein synthesis remained largely unknown until recent years. Recent studies have shown that mRNA translation in developing and mature axons plays a role in axonal growth. In developing axons, protein synthesis allows the distal axon to autonomously respond to guidance cues by rapidly changing its direction of outgrowth. In addition, local proteolysis of axonal proteins contributes axonal guidance and growth cone initiation. This local synthesis and degradation of proteins are likely to provide novel insights into how growing axons navigate through their complex environment. In mature axons, injury triggers formation of a growth cone through localized protein synthesis, and moreover, in these injured axons locally synthesized proteins provide a retrogradely transported signal that can enhance regenerative responses. The intrinsic capability for axons to autonomously regulate local protein levels can be modulated by exogenous stimuli providing opportunities for enhancing regeneration. In this review, the concept of axonal protein synthesis is discussed from a historical perspective. Further, the implications of axonal protein synthesis and proteolysis for neural repair are considered.


Asunto(s)
Axones/metabolismo , Axones/fisiología , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/fisiología , Animales , Movimiento Celular/fisiología , Conos de Crecimiento/fisiología , Humanos , Proteínas del Tejido Nervioso/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA