Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 24(9): 2010-2024, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34160871

RESUMEN

Chemical pesticides remain the main agents for control of arthropod crop pests despite increased concern for their side effects. Although chemical pesticide applications generally result in short-term decreases of pest densities, densities can subsequently resurge to higher levels than before. Thus, pesticide effects on pest densities beyond a single pest generation may vary, but they have not been reviewed in a systematic manner. Using mathematical predator-prey models, we show that pest resurgence is expected when effective natural enemies are present, even when they are less sensitive to pesticides than the pest. Model simulations over multiple pest generations predict that pest resurgence due to pesticide applications will increase average pest densities throughout a growing season when effective natural enemies are present. We tested this prediction with a meta-analysis of published data of field experiments that compared effects of chemical control of arthropod plant pests in the presence and absence of natural enemies. This largely confirmed our prediction: overall, pesticide applications did not reduce pest densities significantly when natural enemies were present, which concerned the vast majority of cases. We also show that long-term pesticide effectiveness is underreported and suggest that pest control by natural enemies deserves more attention.


Asunto(s)
Artrópodos , Plaguicidas , Animales , Modelos Teóricos , Control Biológico de Vectores , Plaguicidas/toxicidad , Plantas
2.
Insects ; 12(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680702

RESUMEN

One of the ecosystem services of biodiversity is the contribution to pest control through conservation and stimulation of natural enemies. However, whether plant diversity around greenhouses is beneficial or a potential risk is heavily debated. In this review, we argue that most greenhouse pests in temperate climates are of exotic origin and infest greenhouses mainly through transportation of plant material. For indigenous pests, we discuss the potential ways in which plant diversity around greenhouses can facilitate or prevent pest migrations into greenhouses. As shown in several studies, an important benefit of increased plant diversity around greenhouses is the stimulation of indigenous natural enemies that migrate to greenhouses, where they suppress both indigenous and exotic pests. How this influx can be supported by specific plant communities, plant characteristics, and habitats while minimising risks of increasing greenhouse pest densities, virus transmission, or hyperparasitism needs further studies. It also requires a better understanding of the underlying processes that link biodiversity with pest management. Inside greenhouses, plant biodiversity can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies.

3.
Oecologia ; 150(4): 557-68, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16964498

RESUMEN

Prey refuges are expected to affect population dynamics, but direct experimental tests of this hypothesis are scarce. Larvae of western flower thrips Frankliniella occidentalis use the web produced by spider mites as a refuge from predation by the predatory mite Neoseiulus cucumeris. Thrips incur a cost of using the refuge through reduced food quality within the web due to spider mite herbivory, resulting in a reduction of thrips developmental rate. These individual costs and benefits of refuge use were incorporated in a stage-structured predator-prey model developed for this system. The model predicted higher thrips numbers in presence than in absence of the refuge during the initial phase. A greenhouse experiment was carried out to test this prediction: the dynamics of thrips and their predators was followed on plants damaged by spider mites, either with or without web. Thrips densities in presence of predators were higher on plants with web than on unwebbed plants after 3 weeks. Experimental data fitted model predictions, indicating that individual-level measurements of refuge costs and benefits can be extrapolated to the level of interacting populations. Model-derived calculations of thrips population growth rate enable the estimation of the minimum predator density at which thrips benefit from using the web as a refuge. The model also predicted a minor effect of the refuge on the prey density at equilibrium, indicating that the effect of refuges on population dynamics hinges on the temporal scale considered.


Asunto(s)
Interacciones Huésped-Parásitos , Insectos/fisiología , Insectos/parasitología , Modelos Biológicos , Animales , Cucumis sativus , Femenino , Ácaros/parasitología , Ácaros/fisiología , Dinámica Poblacional , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA