Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heredity (Edinb) ; 130(3): 135-144, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639700

RESUMEN

European wildlife has been subjected to intensifying levels of anthropogenic impact throughout the Holocene, yet the main genetic partitioning of many species is thought to still reflect the late-Pleistocene glacial refugia. We analyzed 26,342 nuclear SNPs of 464 wild boar (Sus scrofa) across the European continent to infer demographic history and reassess the genetic consequences of natural and anthropogenic forces. We found that population fragmentation, inbreeding and recent hybridization with domestic pigs have caused the spatial genetic structure to be heterogeneous at the local scale. Underlying local anthropogenic signatures, we found a deep genetic structure in the form of an arch-shaped cline extending from the Dinaric Alps, via Southeastern Europe and the Baltic states, to Western Europe and, finally, to the genetically diverged Iberian peninsula. These findings indicate that, despite considerable anthropogenic influence, the deeper, natural continental structure is still intact. Regarding the glacial refugia, our findings show a weaker signal than generally assumed, but are nevertheless suggestive of two main recolonization routes, with important roles for Southern France and the Balkans. Our results highlight the importance of applying genomic resources and framing genetic results within a species' demographic history and geographic distribution for a better understanding of the complex mixture of underlying processes.


Asunto(s)
Variación Genética , Genoma , Animales , Porcinos , Europa (Continente) , Demografía , Sus scrofa/genética , Filogenia , ADN Mitocondrial/genética
2.
Euro Surveill ; 22(35)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28877846

RESUMEN

Tularaemia, a disease caused by the bacterium Francisella tularensis, is a re-emerging zoonosis in the Netherlands. After sporadic human and hare cases occurred in the period 2011 to 2014, a cluster of F. tularensis-infected hares was recognised in a region in the north of the Netherlands from February to May 2015. No human cases were identified, including after active case finding. Presence of F. tularensis was investigated in potential reservoirs and transmission routes, including common voles, arthropod vectors and surface waters. F. tularensis was not detected in common voles, mosquito larvae or adults, tabanids or ticks. However, the bacterium was detected in water and sediment samples collected in a limited geographical area where infected hares had also been found. These results demonstrate that water monitoring could provide valuable information regarding F. tularensis spread and persistence, and should be used in addition to disease surveillance in wildlife.


Asunto(s)
Brotes de Enfermedades , Monitoreo del Ambiente , Liebres/microbiología , Tularemia/epidemiología , Animales , Francisella tularensis , Países Bajos/epidemiología , Tularemia/microbiología , Tularemia/veterinaria
3.
BMC Genet ; 14: 43, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23688182

RESUMEN

BACKGROUND: Population genetic studies focus on natural dispersal and isolation by landscape barriers as the main drivers of genetic population structure. However, anthropogenic factors such as reintroductions, translocations and wild x domestic hybridization may also have strong effects on genetic population structure. In this study we genotyped 351 Single Nucleotide Polymorphism markers evenly spread across the genome in 645 wild boar (Sus scrofa) from Northwest Europe to evaluate determinants of genetic population structure. RESULTS: We show that wild boar genetic population structure is influenced by historical reintroductions and by genetic introgression from domestic pigs. Six genetically distinct and geographically coherent wild boar clusters were identified in the Netherlands and Western Germany. The Dutch Veluwe cluster is known to be reintroduced, and three adjacent Dutch and German clusters are suspected to be a result of reintroduction, based on clustering results, low levels of heterozygosity and relatively high genetic distances to nearby populations. Recent wild x domestic hybrids were found geographically widespread across clusters and at low frequencies (average 3.9%). The relationship between pairwise kinship coefficients and geographic distance showed male-biased dispersal at the population genetic level. CONCLUSIONS: Our results demonstrate that wildlife and landscape management by humans are shaping the genetic diversity of an iconic wildlife species. Historical reintroductions, translocation and recent restocking activities with farmed wild boar have all influenced wild boar genetic population structure. The current trend of wild boar population growth and range expansion has recently led to a number of contact zones between clusters, and further admixture between the different wild boar clusters is to be expected.


Asunto(s)
Animales Domésticos/genética , Animales Salvajes/genética , Porcinos/genética , Animales , Genética de Población , Alemania , Hibridación Genética , Países Bajos , Polimorfismo de Nucleótido Simple
4.
Parasit Vectors ; 10(1): 497, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29047399

RESUMEN

BACKGROUND: Birds play a major role in the maintenance of enzootic cycles of pathogens transmitted by ticks. Due to their mobility, they affect the spatial distribution and abundance of both ticks and pathogens. In the present study, we aim to identify members of a pathogen community [Borrelia burgdorferi (s.l.), B. miyamotoi, 'Ca. Neoehrlichia mikurensis', Anaplasma phagocytophilum and Rickettsia helvetica] in songbird-derived ticks from 11 locations in the Netherlands and Belgium (2012-2014). RESULTS: Overall, 375 infested songbird individuals were captured, belonging to 35 species. Thrushes (Turdus iliacus, T. merula and T. philomelos) were trapped most often and had the highest mean infestation intensity for both Ixodes ricinus and I. frontalis. Of the 671 bird-derived ticks, 51% contained DNA of at least one pathogenic agent and 13% showed co-infections with two or more pathogens. Borrelia burgdorferi (s.l.) DNA was found in 34% of the ticks of which majority belong to so-called avian Borrelia species (distribution in Borrelia-infected ticks: 47% B. garinii, 34% B. valaisiana, 3% B. turdi), but also the mammal-associated B. afzelii (16%) was detected. The occurrence of B. miyamotoi was low (1%). Prevalence of R. helvetica in ticks was high (22%), while A. phagocytophilum and 'Ca. N. mikurensis' prevalences were 5% and 4%, respectively. The occurrence of B. burgdorferi (s.l.) was positively correlated with the occurrence of 'Ca. N. mikurensis', reflecting variation in susceptibility among birds and/or suggesting transmission facilitation due to interactions between pathogens. CONCLUSIONS: Our findings highlight the contribution of European songbirds to co-infections in tick individuals and consequently to the exposure of humans to multiple pathogens during a tick bite. Although poorly studied, exposure to and possibly also infection with multiple tick-borne pathogens in humans seems to be the rule rather than the exception.


Asunto(s)
Anaplasmataceae/aislamiento & purificación , Borrelia burgdorferi/aislamiento & purificación , Rickettsia/aislamiento & purificación , Pájaros Cantores/parasitología , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/aislamiento & purificación , Anaplasmataceae/genética , Animales , Bélgica/epidemiología , Borrelia burgdorferi/genética , Coinfección/veterinaria , Países Bajos/epidemiología , Rickettsia/genética , Mordeduras de Garrapatas/parasitología , Mordeduras de Garrapatas/veterinaria
5.
Ecohealth ; 12(4): 571-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26391376

RESUMEN

Wildlife immune genes are subject to natural selection exerted by pathogens. In contrast, domestic immune genes are largely protected from pathogen selection by veterinary care. Introgression of domestic alleles into the wild could lead to increased disease susceptibility, but observations are scarce due to low introgression rates, low disease prevalence and reduced survival of domestic hybrids. Here we report the first observation of a deleterious effect of domestic introgression on disease prevalence in a free-living large mammal. A fraction of 462 randomly sampled free-living European wild boar (Sus scrofa) was genetically identified as recent wild boar-domestic pig hybrids based on 351 SNP data. Analysis of antibody prevalence against the bacterial pathogen Mycoplasma hyopneumoniae (Mhyo) showed an increased Mhyo prevalence in wild-domestic hybrids. We argue that the most likely mechanism explaining the observed association between domestic hybrid status and Mhyo antibody prevalence would be introgression of deleterious domestic alleles. We hypothesise that large-scale use of antibiotics in the swine breeding sector may have played a role in shaping the relatively deleterious properties of domestic swine immune genes and that domestic introgression may also lead to increased wildlife disease susceptibility in the case of other species.


Asunto(s)
Animales Salvajes/microbiología , Quimera/genética , Monitoreo Epidemiológico/veterinaria , Mycoplasma hyopneumoniae/aislamiento & purificación , Neumonía Porcina por Mycoplasma/epidemiología , Sus scrofa/microbiología , Porcinos/microbiología , Animales , Transferencia de Gen Horizontal , Alemania , Países Bajos , Prevalencia
6.
Front Public Health ; 2: 238, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505781

RESUMEN

Public health statistics recorded an increasing trend in the incidence of tick bites and erythema migrans (EM) in the Netherlands. We investigated whether the disease incidence could be predicted by a spatially explicit categorization model, based on environmental factors and a training set of tick absence-presence data. Presence and absence of Ixodes ricinus were determined by the blanket-dragging method at numerous sites spread over the Netherlands. The probability of tick presence on a 1 km by 1 km square grid was estimated from the field data using a satellite-based methodology. Expert elicitation was conducted to provide a Bayesian prior per landscape type. We applied a linear model to test for a linear relationship between incidence of EM consultations by general practitioners in the Netherlands and the estimated probability of tick presence. Ticks were present at 252 distinct sampling coordinates and absent at 425. Tick presence was estimated for 54% of the total land cover. Our model has predictive power for tick presence in the Netherlands, tick-bite incidence per municipality correlated significantly with the average probability of tick presence per grid. The estimated intercept of the linear model was positive and significant. This indicates that a significant fraction of the tick-bite consultations could be attributed to the I. ricinus population outside the resident municipality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA