Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(20): 206802, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31172788

RESUMEN

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation, and Hahn-echo measurements and find significantly reduced decoherence rates down to γ_{2}/2π∼3 MHz corresponding to coherence times of up to T_{2}∼50 ns for charge states in gate-defined quantum dot qubits. We realize Rabi π pulses of width down to σ∼0.25 ns.

2.
Phys Rev Lett ; 121(4): 047001, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095962

RESUMEN

The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the realization of superconducting qubits with gate-tunable Josephson energies. We have used a microwave circuit QED architecture to detect Andreev bound states in such a gate-tunable junction based on an aluminum-proximitized indium arsenide nanowire. We demonstrate coherent manipulation of these bound states, and track the bound-state fermion parity in real time. Individual parity-switching events due to nonequilibrium quasiparticles are observed with a characteristic timescale T_{parity}=160±10 µs. The T_{parity} of a topological nanowire junction sets a lower bound on the bandwidth required for control of Majorana bound states.

3.
Phys Rev Lett ; 115(12): 127002, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26431010

RESUMEN

We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively shunted single elements behave as transmon circuits with electrically tunable transition frequencies. Two-element circuits also exhibit transmonlike behavior near zero applied flux but behave as flux qubits at half the flux quantum, where nonsinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in a magnetic field.

4.
Nat Commun ; 10(1): 3011, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285437

RESUMEN

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus. The transmon-charge qubit coherent coupling rate (~21 MHz) exceeds the linewidth of both the transmon (~0.8 MHz) and the DQD charge qubit (~2.7 MHz). By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA