RESUMEN
BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).
Asunto(s)
Antineoplásicos , Glioma , Recurrencia Local de Neoplasia , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Progresión de la Enfermedad , Método Doble Ciego , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piridinas/efectos adversos , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéuticoRESUMEN
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Asunto(s)
Neoplasias Encefálicas , Glioma , Organización Mundial de la Salud , Humanos , Glioma/cirugía , Glioma/patología , Glioma/clasificación , Glioma/mortalidad , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/mortalidad , Algoritmos , Adulto , Procedimientos Neuroquirúrgicos/efectos adversos , Resultado del TratamientoRESUMEN
Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.
Asunto(s)
Glioma , Neurología , Humanos , Glioma/diagnóstico por imagen , Glioma/terapia , Aminoácidos , Medicina Interna , Tomografía de Emisión de Positrones , Factores de TranscripciónRESUMEN
BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.
Asunto(s)
Aprendizaje Profundo , Glioblastoma , Humanos , Inteligencia Artificial , Biomarcadores , Estudios de Cohortes , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios RetrospectivosRESUMEN
A diagnosis of brain metastasis (BM) significantly affects quality of life in patients with metastatic renal cell cancer (mRCC). Although systemic treatments have shown efficacy in mRCC, active surveillance (AS) is still commonly used in clinical practice. In this single-center cohort study, we assessed the impact of different initial treatment strategies for metastatic RCC (mRCC) on the development of BM. All consecutive patients diagnosed with mRCC between 2011 and 2022 were included at the Erasmus MC Cancer Institute, the Netherlands, and a subgroup of patients with BM was selected. In total, 381 patients with mRCC (ECM, BM, or both) were identified. Forty-six patients had BM of whom 39 had metachronous BM (diagnosed ≥1 month after ECM). Twenty-five (64.1%) of these 39 patients with metachronous BM had received prior systemic treatment for ECM and 14 (35.9%) patients were treatment naive at BM diagnosis. The median BM-free survival since ECM diagnosis was significantly longer (p = .02) in previously treated patients (29.0 [IQR 12.6-57.0] months) compared to treatment naive patients (6.8 [IQR 1.0-7.0] months). In conclusion, patients with mRCC who received systemic treatment for ECM prior to BM diagnosis had a longer BM-free survival as compared to treatment naïve patients. These results emphasize the need for careful evaluation of treatment strategies, and especially AS, for patients with mRCC.
Asunto(s)
Neoplasias Encefálicas , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/secundario , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/terapia , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Masculino , Femenino , Neoplasias Renales/patología , Persona de Mediana Edad , Anciano , Calidad de Vida , Estudios Retrospectivos , Países Bajos/epidemiologíaRESUMEN
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Terapia Combinada , Inmunoterapia/métodos , Mutación , Microambiente TumoralRESUMEN
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Metilación de ADN , Epigénesis Genética , Isocitrato Deshidrogenasa , Mutación , Humanos , Astrocitoma/genética , Astrocitoma/patología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Mutación/genética , Epigénesis Genética/genética , Femenino , Masculino , Desarrollo Embrionario/genética , Persona de Mediana Edad , Adulto , Clasificación del TumorRESUMEN
PURPOSE: To provide practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor (SSTR) ligands. METHODS: This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). RESULTS: Positron emission tomography (PET) using somatostatin receptor (SSTR) ligands can detect meningioma tissue with high sensitivity and specificity and may provide clinically relevant information beyond that obtained from structural magnetic resonance imaging (MRI) or computed tomography (CT) imaging alone. SSTR-directed PET imaging can be particularly useful for differential diagnosis, delineation of meningioma extent, detection of osseous involvement, and the differentiation between posttherapeutic scar tissue and tumour recurrence. Moreover, SSTR-peptide receptor radionuclide therapy (PRRT) is an emerging investigational treatment approach for meningioma. CONCLUSION: These practice guidelines will define procedure standards for the application of PET imaging in patients with meningiomas and related SSTR-targeted PRRTs in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers, facilitate comparability of studies, and to collect larger databases. The current document provides additional information to the evidence-based recommendations from the PET/RANO Working Group regarding the utilization of PET imaging in meningiomas Galldiks (Neuro Oncol. 2017;19(12):1576-87). The information provided should be considered in the context of local conditions and regulations.
Asunto(s)
Meningioma , Receptores de Somatostatina , Receptores de Somatostatina/metabolismo , Humanos , Meningioma/diagnóstico por imagen , Meningioma/radioterapia , Meningioma/terapia , Ligandos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/terapia , Marcaje Isotópico , Radiofármacos/uso terapéutico , Medicina Nuclear/normas , Tomografía de Emisión de Positrones/normas , Tomografía de Emisión de Positrones/métodosRESUMEN
BACKGROUND: The health-related quality of life (HRQoL) and cognition are important indicators for the quality of survival in patients with high-grade glioma (HGG). However, data on long-term survivors and their caregivers are scarce. We aim to investigate the interaction between cognition and HRQoL in long-term survivors, their caregivers' evaluations, and the effect on caregiver strain and burden. METHODS: 21 long-term HGG (8 WHO grade III and 13 WHO grade IV) survivors (survival ≥ 5 years) and 15 caregivers were included. Cognition (verbal memory, attention, executive functioning, and language), HRQoL, anxiety and depression, caregiver strain, and caregiver burden were assessed with standardized measures. Questionnaires were completed by patients and/or their caregivers. RESULTS: Mean survival was 12 years (grade III) and 8 years (grade IV). Cognition was significantly impaired with a large individual variety. Patients' general HRQoL was not impaired but all functioning scales were deviant. Patient-proxy agreement was found in most HRQoL subscales. Three patients (14%) showed indications of anxiety or depression. One-third of the caregivers reported a high caregiver strain or a high burden. Test scores for attention, executive functioning, language, and/or verbal memory were correlated with perceived global health status, cognitive functioning, and/or communication deficits. Caregiver burden was not related to cognitive deficits. CONCLUSIONS: In long-term HGG survivors maintained HRQoL seems possible even when cognition is impaired in a large variety at the individual level. A tailored approach is therefore recommended to investigate the cognitive impairments and HRQoL in patients and the need for patient and caregiver support.
Asunto(s)
Glioma , Calidad de Vida , Humanos , Calidad de Vida/psicología , Cuidadores/psicología , Glioma/psicología , Encuestas y Cuestionarios , Cognición , Sobrevivientes/psicologíaRESUMEN
Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Estudios Prospectivos , Bancos de Muestras Biológicas , Recurrencia Local de Neoplasia/cirugía , Glioma/diagnóstico por imagen , Glioma/cirugíaRESUMEN
BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Evaluación Preclínica de Medicamentos , Biomarcadores , ADN/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Microambiente TumoralRESUMEN
BACKGROUND: Withdrawal of antiseizure medication treatment (ASM) can be considered after completion of antitumour treatment in glioma patients who no longer suffer from seizures. We compared the risk for recurrent seizures after ASM withdrawal between patients with short-term, medium-term versus long-term seizure freedom after antitumour treatment. METHODS: In this retrospective observational study, the primary outcome was time to recurrent seizure, from the starting date of no ASM treatment up to 36 months follow-up. Cox proportional hazards models were used to study the effect of risk factors on time to recurrent seizure. Stratification was done with information known at baseline. Short-term seizure freedom was defined as ≥ 3 months, but < 12 months; medium-term as 12-24 months; and long-term as ≥ 24 months seizure freedom from the date of last antitumour treatment. RESULTS: This study comprised of 109 patients; 31% (34/109) were in the short-term, 29% (32/109) in the medium-term, and 39% (43/109) in the long-term group. A recurrent seizure was experienced by 47% (16/34) of the patients in the short-term, 31% (10/32) in the medium-term, and 44% (19/43) in the long-term group. Seizure recurrence risk was similar between patients in the short-term group as compared to the medium-term (cause-specific adjusted hazard ratio [aHR] = 0.65 [95%CI = 0.29-1.46]) and long-term group (cause-specific aHR = 1.04 [95%CI = 0.52-2.09]). CONCLUSIONS: Seizure recurrence risk is relatively similar between patients with short-term, medium-term, and long-term seizure freedom after completion of antitumour treatment.
Asunto(s)
Epilepsia Generalizada , Glioma , Humanos , Anticonvulsivantes/uso terapéutico , Epilepsia Generalizada/inducido químicamente , Epilepsia Generalizada/complicaciones , Epilepsia Generalizada/tratamiento farmacológico , Glioma/complicaciones , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/inducido químicamente , Recurrencia , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Estudios RetrospectivosRESUMEN
OBJECTIVES: Arterial spin labelling (ASL) perfusion MRI is one of the available advanced MRI techniques for brain tumour surveillance. The first aim of this study was to investigate the correlation between quantitative cerebral blood flow (CBF) and non-quantitative perfusion weighted imaging (ASL-PWI) measurements. The second aim was to investigate the diagnostic accuracy of ASL-CBF and ASL-PWI measurements as well as visual assessment for identifying tumour progression. METHODS: A consecutive cohort of patients who underwent 3-T MRI surveillance containing ASL for treated brain tumours was used. ROIs were drawn in representative parts of tumours in the ASL-CBF maps and copied to the ASL-PWI. ASL-CBF ratios and ASL-PWI ratios of the tumour ROI versus normal appearing white matter (NAWM) were correlated (Pearson correlation) and AUCs were calculated to assess diagnostic accuracy. Additionally, lesions were visually classified as hypointense, isointense, or hyperintense. We calculated accuracy at two thresholds: low threshold (between hypointense-isointense) and high threshold (between isointense-hyperintense). RESULTS: A total of 173 lesions, both enhancing and non-enhancing, measured in 115 patients (93 glioma, 16 metastasis, and 6 lymphoma) showed a very high correlation of 0.96 (95% CI: 0.88-0.99) between ASL-CBF ratios and ASL-PWI ratios. AUC was 0.76 (95%CI: 0.65-0.88) for ASL-CBF ratios and 0.72 (95%CI: 0.58-0.85) for ASL-PWI ratios. Diagnostic accuracy of visual assessment for enhancing lesions was 0.72. CONCLUSION: ASL-PWI ratios and ASL-CBF ratios showed a high correlation and comparable AUCs; therefore, quantification of ASL-CBF could be omitted in these patients. Visual classification had comparable diagnostic accuracy to the ASL-PWI or ASL-CBF ratios. CLINICAL RELEVANCE STATEMENT: This study shows that CBF quantification of ASL perfusion MRI could be omitted for brain tumour surveillance and that visual assessment provides the same diagnostic accuracy. This greatly reduces the complexity of the use of ASL in routine clinical practice. KEY POINTS: ⢠Arterial spin labelling MRI for clinical brain tumour surveillance is undervalued and underinvestigated. ⢠Non-quantitative and quantitative arterial spin labelling assessments show high correlation and comparable diagnostic accuracy. ⢠Quantification of arterial spin labelling MRI could be omitted to improve daily clinical workflow.
Asunto(s)
Neoplasias Encefálicas , Linfoma , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/patología , Circulación Cerebrovascular/fisiología , Marcadores de SpinRESUMEN
PURPOSE: Treatment advancements have improved life expectancy for adolescents and young adults (AYAs) with an uncertain and/or poor cancer prognosis (UPCP) and change clinical practice. This improved survival requires a different approach and specific expertise to meet the needs of this group. The aim of this study is to explore the health care experiences of AYAs with a UPCP. METHODS: We conducted a multicenter qualitative study using semi-structured interviews and elements of the grounded theory by Corbin and Strauss. RESULTS: Interviews were conducted with 46 AYAs with a UPCP. They were on average 33.4 years old (age range 23-44), and most of them were woman (63%). Additionally, five AYAs with a UPCP participated as AYA research partners in two focus groups. They were on average 31.8 years old and four of them were woman. AYAs with a UPCP reported four pillars for a satisfied healthcare experience: (1) trust, (2) tailored communication, (3) holistic empathic open attitude, and (4) care being offered (pro-)actively. They reported both optimal and suboptimal experiences about distrust based on a delay in diagnostic trajectory, lack of tailored communication and discussion of sensitive topics, preference for a holistic approach, and struggles with finding the way to get additional healthcare support. CONCLUSION: For AYAs with a UPCP, it is important that both age-specific issues and issues related to the UPCP are understood and addressed; however, this seems not yet optimally implemented in clinical practice. This emphasizes the importance of providing this patient group with tailored care incorporating both aspects. Healthcare professionals need to be supported with training and tools to understand the healthcare needs of AYAs with a UPCP. AYAs can be empowered to take more control over their own healthcare needs.
Asunto(s)
Neoplasias , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Neoplasias/terapia , Personal de Salud , Investigación Cualitativa , Atención a la Salud , PronósticoRESUMEN
BACKGROUND: Effective treatments are needed to improve outcomes for high-grade glioma and low-grade glioma. The activity and safety of dabrafenib plus trametinib were evaluated in adult patients with recurrent or progressive BRAFV600E mutation-positive high-grade glioma and low-grade glioma. METHODS: This study is part of an ongoing open-label, single-arm, phase 2 Rare Oncology Agnostic Research (ROAR) basket trial at 27 community and academic cancer centres in 13 countries (Austria, Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Norway, South Korea, Spain, Sweden, and the USA). The study enrolled patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2. Patients with BRAFV600E mutation-positive high-grade glioma and low-grade glioma received dabrafenib 150 mg twice daily plus trametinib 2 mg once daily orally until unacceptable toxicity, disease progression, or death. In the high-grade glioma cohort, patients were required to have measurable disease at baseline using the Response Assessment in Neuro-Oncology high-grade glioma response criteria and have been treated previously with radiotherapy and first-line chemotherapy or concurrent chemoradiotherapy. Patients with low-grade glioma were required to have measurable non-enhancing disease (except pilocytic astrocytoma) at baseline using the Response Assessment in Neuro-Oncology low-grade glioma criteria. The primary endpoint, in the evaluable intention-to-treat population, was investigator-assessed objective response rate (complete response plus partial response for high-grade glioma and complete response plus partial response plus minor response for low-grade glioma). This trial is ongoing, but is closed for enrolment, NCT02034110. FINDINGS: Between April 17, 2014, and July 25, 2018, 45 patients (31 with glioblastoma) were enrolled into the high-grade glioma cohort and 13 patients were enrolled into the low-grade glioma cohort. The results presented here are based on interim analysis 16 (data cutoff Sept 14, 2020). In the high-grade glioma cohort, median follow-up was 12·7 months (IQR 5·4-32·3) and 15 (33%; 95% CI 20-49) of 45 patients had an objective response by investigator assessment, including three complete responses and 12 partial responses. In the low-grade glioma cohort, median follow-up was 32·2 months (IQR 25·1-47·8). Nine (69%; 95% CI 39-91) of 13 patients had an objective response by investigator assessment, including one complete response, six partial responses, and two minor responses. Grade 3 or worse adverse events were reported in 31 (53%) patients, the most common being fatigue (five [9%]), decreased neutrophil count (five [9%]), headache (three [5%]), and neutropenia (three [5%]). INTERPRETATION: Dabrafenib plus trametinib showed clinically meaningful activity in patients with BRAFV600E mutation-positive recurrent or refractory high-grade glioma and low-grade glioma, with a safety profile consistent with that in other indications. BRAFV600E testing could potentially be adopted in clinical practice for patients with glioma. FUNDING: Novartis.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Adolescente , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Femenino , Glioma/genética , Glioma/mortalidad , Humanos , Imidazoles/administración & dosificación , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Oximas/administración & dosificación , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Adulto JovenRESUMEN
PURPOSE: The rate of missing data on patient-reported health-related quality of life (HRQOL) in brain tumor clinical trials is particularly high over time. One solution to this issue is the use of proxy (i.e., partner, relative, informal caregiver) ratings in lieu of patient-reported outcomes (PROs). In this study we investigated patient-proxy agreement on HRQOL outcomes in high-grade glioma (HGG) patients. METHODS: Generic and disease-specific HRQOL were assessed using the EORTC QLQ-C30 and QLQ-BN20 in a sample of 501 patient-proxy dyads participating in EORTC trials 26101 and 26091. Patients were classified as impaired or intact, based on their neurocognitive performance. The level of patient-proxy agreement was measured using Lin's concordance correlation coefficient (CCC) and the Bland-Altman limit of agreement. The Wilcoxon signed-rank test was used to evaluate differences between patients' and proxies' HRQOL. RESULTS: Patient-proxy agreement in all HGG patients (N = 501) ranged from 0.082 to 0.460. Only 18.8% of all patients were neurocognitively intact. Lin's CCC ranged from 0.088 to 0.455 in cognitively impaired patients and their proxies and from 0.027 to 0.538 in cognitively intact patients and their proxies. CONCLUSION: While patient-proxy agreement on health-related quality of life outcomes is somewhat higher in cognitively intact patients, agreement in high-grade glioma patients is low in general. In light of these findings, we suggest to cautiously consider the use of proxy's evaluation in lieu of patient-reported outcomes, regardless of patient's neurocognitive status.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Recurrencia Local de Neoplasia , Apoderado , Calidad de Vida/psicología , Encuestas y CuestionariosRESUMEN
OBJECTIVE: Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity. MATERIALS & METHODS: A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal. RESULTS: LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min-max: 2.4 %-54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma. CONCLUSION: This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Imagen por Resonancia Magnética/métodos , ProtonesRESUMEN
BACKGROUND: The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS: This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS: Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION: Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING: Merck Sharpe & Dohme.
Asunto(s)
Glioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Temozolomida/administración & dosificación , Adolescente , Adulto , Anciano , Australia , Quimioterapia Adyuvante , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Terapia Combinada , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Europa (Continente) , Femenino , Glioma/genética , Glioma/patología , Glioma/radioterapia , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Persona de Mediana Edad , América del Norte , Radioterapia Conformacional , Adulto JovenRESUMEN
PURPOSE OF REVIEW: Evolving molecular data have led to a new and advanced grading system of anaplastic glioma. In everyday practice, physicians have to translate evidence from old clinical trials into evidence meeting the reclassified tumor types. RECENT FINDINGS: New biomarkers allow the identification of anaplastic glioma with relatively poor prognosis and with prognosis similar to glioblastoma. An update with molecular analysis of the phase 3 CATNON trial demonstrates the benefit of adjuvant temozolomide (TMZ) to be dependent on the mutational status of isocitrate dehydrogenase. In the ongoing debate on the optimal chemotherapy regimen, a large retrospective study suggesting a better tumor control with vincristine (PCV) as compared to TMZ is added to the evidence. The best timing for treatment of anaplastic astrocytoma also remains a matter of controversy. A recent study shows that even in selected patients with anaplastic glioma with foci of malignant tumor following (sub)total resection, postponement of medical treatment can be considered. SUMMARY: In clinical practice, the trade-off between efficacy and (acute and long-term) toxicity of treatments needs to be re-evaluated for the newly (molecularly) defined entities. Updates from past clinical trials on anaplastic glioma with molecular analysis and subgroup analyses are needed to further guide treatment decisions.
Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ensayos Clínicos Fase III como Asunto , Glioma/genética , Glioma/patología , Humanos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.