Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e1800284, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30027644

RESUMEN

Here, a means of controlling the assembly pathways of p-conjugated oligoelectrolytes into supramolecular fibers and microtubes is presented, and it is shown how the addition of small end-caps to well-defined and pH-responsive conjugated oligomers can alter the balance between repulsive and attractive supramolecular forces and enables control of the morphology of the hierarchical assembly process. The assembly stages from nuclei to protofibers are evidenced and a hypothesis on the mechanism of microtubes formation using a combination of analytical methods is provided, revealing different degrees of order at different scales along the structural hierarchy.

2.
Small ; 10(5): 957-63, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24745058

RESUMEN

The self-assembly of colloidal conjugated polymers presents a versatile and powerful oute towards new functional optoelectronic materials and devices. However, this strategy relies on the existence of chemical protocols to prepare highly monodisperse colloids of conjugated polymers in high yields. Here, a recently developed Suzuki­Miyaura dispersion polymerization method is adopted to synthesize core­shell particles, in which a conjugated polymer shell is grown onto non-conjugated organic and inorganic colloidal templates. By chemically anchoring aryl halide groups at the particle surface, a conjugated polymer shell can be attached to a wide variety of organic and inorganic microparticles. In this way, both spherical and non-spherical hybrid conjugated polymer particles are prepared, and it is shown that the method can be applied to a variety of conjugated polymers. This new method offers independent control of the size, shape and photophysical properties of these novel conjugated polymer particles.

3.
Phys Chem Chem Phys ; 11(14): 2525-31, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19325987

RESUMEN

We present experiments to determine the quantum efficiency and emission oscillator strength of exclusively the emitting states of the widely used enhanced green fluorescent protein (EGFP). We positioned the emitters at precisely defined distances from a mirror to control the local density of optical states, resulting in characteristic changes in the fluorescence decay rate that we monitored by fluorescence lifetime microscopy. To the best of our knowledge, this is the first emission lifetime control of a biological emitter. From the oscillation of the observed emission lifetimes as a function of the emitter to mirror distance, we determined the radiative and nonradiative decay rates of the fluorophore. Since only the emitting species contribute to the change in emission lifetimes, the rates determined characterize specifically the quantum efficiency and oscillator strength of the on-states of the emitter, in contrast to other methods that do not differentiate between emitting and dark states. The method reported is especially interesting for photophysically complex systems like fluorescent proteins, where a range of emitting and dark forms has been observed. We have validated the analysis method using Rhodamine 6G dye, obtaining results in very good agreement with the literature. For EGFP we determine the quantum efficiency of the on-states to be 72%. As expected for this complex system, our value is higher than that determined by methods that average over on- and off-states.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Fotones , Colorantes Fluorescentes/química , Rayos Láser , Biología Molecular , Conformación Proteica , Rodaminas/química , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA