RESUMEN
An estimated 41% of all forcibly displaced people are children [1]. Many of these children may live in refugee camps, under poor conditions, for years. The health status of children when arriving in these camps is often not recorded, nor is there a good insight into the impact of camp life on their health. We systematically reviewed the evidence concerning the nutritional status of children living in refugee camps in the European and Middle East and North Africa (MENA) regions. We searched Pubmed, Embase, and Global Index Medicus. The primary outcome was the prevalence of stunting, and the secondary outcome was the prevalence of wasting and being overweight. Out of 1385 studies identified, 12 studies were selected, covering 7009 children from fourteen different refugee camps in the Europe and MENA region. There was great heterogeneity among the included studies, which showed that there was a pooled prevalence of stunting of 16% (95% confidence interval 9.9-23%, I2 95%, p < 0.01) and of wasting of 4.2% (95% CI 1.82-6.49%, I2 97%, p < 0.01). Anthropometric measurements were done at random points in time during the children's camp period. However, no study had a longitudinal design, describing the effect of camp life on the nutritional status. Conclusion: This review showed that there is a relatively high prevalence of stunting and a low prevalence of wasting among refugee children. However, the nutritional status of children when entering the camp and the effect of camp life on their health is not known. This information is critical in order to inform policymakers and to create awareness concerning the health of the most vulnerable group of refugees. What is Known: ⢠Migration is a core determinant of health for children. ⢠There are risk factors at every stage of a refugee child's journey that lead to compromised health. What is New: ⢠There is a relatively high prevalence of stunting (16%) and a low prevalence of wasting (4.2%) among refugee children living in refugee camps in Europe and the Middle East and North Africa region.
Asunto(s)
Estado Nutricional , Refugiados , Niño , Humanos , Europa (Continente)/epidemiología , Medio Oriente/epidemiología , África del Norte , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/etiologíaRESUMEN
Since May 2022, an international monkeypox (MPX) outbreak has been ongoing in more than 50 countries. While most cases are men who have sex with men, transmission is not restricted to this population. In this report, we describe the case of a male child younger than 10 years with MPX in the Netherlands. Despite thorough source tracing, a likely source of infection has not been identified. No secondary cases were identified in close contacts.
Asunto(s)
Mpox , Niño , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus , Países Bajos/epidemiologíaRESUMEN
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle.
Asunto(s)
Barrera Hematoencefálica/microbiología , Infecciones del Sistema Nervioso Central/patología , Interacciones Huésped-Patógeno , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/crecimiento & desarrollo , Animales , Encéfalo/microbiología , Modelos Animales de Enfermedad , Macrófagos/microbiología , Pez CebraRESUMEN
Hermansky-Pudlak syndrome type 2 (HPS2) is a syndrome caused by mutations in the beta-3A subunit of the adaptor protein (AP)-3 complex (AP3B1 gene). We describe five unreported cases with four novel mutations, one of which caused aberrant pre-mRNA splicing. A point mutation c.2702C>G in exon 23 of the AP3B1 gene caused deletion of 112 bp in the mRNA in two siblings. This mutation activates a cryptic donor splice site that overrules the wild-type donor splice site of this exon. Three other novel mutations in AP3B1 were identified, that is, a nonsense mutation c.716G>A (p.Trp239Ter), a 1-bp and a 4-bp deletion c.177delA and c.1839_1842delTAGA, respectively, both causing frameshift and premature termination of translation. Mass spectrometry in four of these HPS2 patients demonstrated the (near) absence of all AP-3 complex subunits. Immunoelectron microscopy on the neutrophils of two of these patients showed abnormal granule formation. We found clear mislocalization of myeloperoxidase in the neutrophils even though the content of this protein but not the activity seemed to be present at normal levels. In sum, HPS2 is the result of the absence of the entire AP-3 complex, which results in severe neutropenia with a defect in granule formation as the major hematological finding.
Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Síndrome de Hermanski-Pudlak/genética , Precursores del ARN/genética , Empalme del ARN/genética , Adolescente , Adulto , Niño , Preescolar , Codón sin Sentido/genética , Exones/genética , Femenino , Síndrome de Hermanski-Pudlak/fisiopatología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Fenotipo , Mutación Puntual , Sitios de Empalme de ARN/genética , Eliminación de Secuencia/genéticaRESUMEN
There is compelling evidence that a dysregulated immune inflammatory response in neuroinfectious diseases results in modifications in metabolic processes and altered metabolites, directly or indirectly influencing lipid metabolism within the central nervous system (CNS). The challenges in differential diagnosis and the provision of effective treatment in many neuroinfectious diseases are, in part, due to limited understanding of the pathophysiology underlying the disease. Although there are numerous metabolomics studies, there remains a deficit in neurolipidomics research to provide a comprehensive understanding of the connection between altered metabolites and changes in lipid metabolism. The brain is an inherently high-lipid organ; hence, understanding neurolipidomics is the key to future breakthroughs. This review aims to provide an integrative summary of altered cerebrospinal fluid (CSF) metabolites associated with neurolipid metabolism in bacterial and viral CNS infections, with a particular focus on studies that used liquid chromatography-mass spectrometry (LC-MS). Lipid components (phospholipids) and metabolites (carnitine and tryptophan) appear to be the most significant indicators in both bacterial and viral infections. On the basis of our analysis of the literature, we recommend employing neurolipidomics in conjunction with existing neurometabolomics data as a prospective method to enhance our understanding of the cross link between dysregulated metabolites and lipid metabolism in neuroinfectious diseases.
RESUMEN
Managing neonatal sepsis is challenging due to nonspecific clinical signs, hematological markers with poor accuracy, and a lengthy turnaround time for the identification of microorganisms. Delaying the initiation of antibiotics in truly infected infants can lead to severe morbidity and mortality. Therefore, decisions regarding empiric antibiotic treatment are risk stratified, which exposes many uninfected infants to antibiotics. This causes gut microbiota perturbation, unnecessary hospital admissions, and the generation of multi-resistant organisms. High-speed diagnostic assays could expedite discontinuation or avert the initiation of antibiotics in uninfected infants. This study will evaluate the diagnostic performance of molecular culture (MC), a rapid broad-range PCR-based bacterial profiling technique, for diagnosing neonatal sepsis in infants below 90 days old. A multi-center prospective observational cohort study will include infants evaluated for early and late-onset sepsis. Routine evaluation for suspected sepsis includes microbiological cultures of blood. Additionally, blood for MC will be collected. For early-onset sepsis, umbilical cord blood may be used alternatively. Primary outcome is the agreement between MC and conventional blood culture results. Secondary outcome is the agreement of both assays with clinical sepsis using four different, commonly used definitions. Faster diagnostic pathways for sepsis may reduce antibiotic exposure time. Broad-range molecular assays may identify pathogens undetectable by conventional methods. Employment of umbilical cord blood samples for early-onset sepsis diagnosis can resolve challenges in collecting adequate blood volume and could further expedite treatment decisions.
RESUMEN
BACKGROUND: The pathogenesis of tuberculous meningitis (TBM) involves infection by Mycobacterium tuberculosis in the meninges and brain. However, recent studies have shown that the immune response and inflammatory processes triggered by TBM can have significant effects on gut microbiota. Disruptions in the gut microbiome have been linked to various systemic consequences, including altered immunity and metabolic dysregulation. Inflammation caused by TBM, antibiotic treatment, and changes in host immunity can all influence the composition of gut microbes. This complex relationship between TBM and the gut microbiome is of great importance in clinical settings. To gain a deeper understanding of the intricate interactions between TBM and the gut microbiome, we report innovative insights into the development of the disease in response to treatment. Ultimately, this could lead to improved outcomes, management strategies and quality of life for individuals affected by TBM. METHOD: We used a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to investigate metabolites associated with gut metabolism in paediatric participants by analysing the urine samples collected from a control group (n = 40), and an experimental group (n = 35) with confirmed TBM, which were subdivided into TBM stage 1 (n = 8), stage 2 (n = 11) and stage 3 (n = 16). FINDINGS: Our metabolomics investigation showed that, of the 78 initially selected compounds of microbiome origin, eight unique urinary metabolites were identified: 2-methylbutyrlglycine, 3-hydroxypropionic acid, 3-methylcrotonylglycine, 4-hydroxyhippuric acid, 5-hydroxyindoleacetic acid, 5-hydroxyhexanoic acid, isobutyrylglycine, and phenylacetylglutamine as urinary markers of dysbiosis in TBM. CONCLUSION: These results - which are supported by previous urinary studies of tuberculosis - highlight the importance of gut metabolism and of identifying corresponding microbial metabolites as novel points for the foundation of improved management of TBM patients.
RESUMEN
Tuberculous meningitis (TBM)-the extrapulmonary form of tuberculosis, is the most severe complication associated with tuberculosis, particularly in infants and children. The gold standard for the diagnosis of TBM requires cerebrospinal fluid (CSF) through lumbar puncture-an invasive sample collection method, and currently available CSF assays are often not sufficient for a definitive TBM diagnosis. Urine is metabolite-rich and relatively unexplored in terms of its potential to diagnose neuroinfectious diseases. We used an untargeted proton magnetic resonance (1H-NMR) metabolomics approach to compare the urine from 32 patients with TBM (stratified into stages 1, 2 and 3) against that from 39 controls in a South African paediatric cohort. Significant spectral bins had to satisfy three of our four strict cut-off quantitative statistical criteria. Five significant biological metabolites were identified-1-methylnicotinamide, 3-hydroxyisovaleric acid, 5-aminolevulinic acid, N-acetylglutamine and methanol-which had no correlation with medication metabolites. ROC analysis revealed that methanol lacked diagnostic sensitivity, but the other four metabolites showed good diagnostic potential. Furthermore, we compared mild (stage 1) TBM and severe (stages 2 and 3) TBM, and our multivariate metabolic model could successfully classify severe but not mild TBM. Our results show that urine can potentially be used to diagnose severe TBM.
Asunto(s)
Tuberculosis Meníngea , Humanos , Tuberculosis Meníngea/orina , Tuberculosis Meníngea/diagnóstico , Tuberculosis Meníngea/líquido cefalorraquídeo , Masculino , Femenino , Niño , Preescolar , Lactante , Metabolómica/métodos , Biomarcadores/orina , Biomarcadores/líquido cefalorraquídeo , Curva ROC , AdolescenteRESUMEN
Tuberculous meningitis (TBM) is a severe form of tuberculosis with high neuro-morbidity and mortality, especially among the paediatric population (aged ≤12 years). Little is known of the associated metabolic changes. This study aimed to identify characteristic metabolic markers that differentiate severe cases of paediatric TBM from controls, through non-invasive urine collection. Urine samples selected for this study were from two paediatric groups. Group 1: controls (n = 44): children without meningitis, no neurological symptoms and from the same geographical region as group 2. Group 2: TBM cases (n = 13): collected from paediatric patients that were admitted to Tygerberg Hospital in South Africa on the suspicion of TBM, mostly severely ill; with a later confirmation of TBM. Untargeted 1H NMR-based metabolomics data of urine were generated, followed by statistical analyses via MetaboAnalyst (v5.0), and the identification of important metabolites. Twenty nine urinary metabolites were identified as characteristic of advanced TBM and categorized in terms of six dysregulated metabolic pathways: 1) upregulated tryptophan catabolism linked to an altered vitamin B metabolism; 2) perturbation of amino acid metabolism; 3) increased energy production-metabolic burst; 4) disrupted gut microbiota metabolism; 5) ketoacidosis; 6) increased nitrogen excretion. We also provide original biological insights into this biosignature of urinary metabolites that can be used to characterize paediatric TBM patients in a South African cohort.
RESUMEN
A multicenter cross-sectional diagnostic study was carried out including 45 children with nontuberculous mycobacterial cervicofacial lymphadenitis and controls. The tested immunoassay, detecting M. avium-specific anti-glycopeptidolipid-core immunoglobulin A antibodies, had inadequate diagnostic performance in the studied population and seems to be of no additional value in detecting cases of nontuberculous mycobacterial cervicofacial lymphadenitis.
RESUMEN
In about 1% of tuberculosis (TB) patients, Mycobacterium tuberculosis (M. tuberculosis) can disseminate to the meninges, causing tuberculous meningitis (TBM) with mortality rate up to 60%. Chronic granulomatous inflammation (non-necrotizing and necrotizing) in the brain is the histological hallmark of TBM. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and the generated kynurenine metabolites exert major effector functions relevant to TB granuloma functioning. Here we have assessed immunohistochemically IDO1 expression and activity and its effector function and that of its isoform, IDO2, in post-mortem brain tissue of patients that demised with neurotuberculosis. We also related these findings to brain tissue of fatal/severe COVID-19. In this study, IDO1 and IDO2 were abundantly expressed and active in tuberculoid granulomas and were associated with the presence of M. tuberculosis as well as markers of autophagy and apoptosis. Like in fatal/severe COVID-19, IDO2 was also prominent in specific brain regions, such as the inferior olivary nucleus of medulla oblongata and cerebellum, but not associated with granulomas or with M. tuberculosis. Spatially associated apoptosis was observed in TBM, whereas in fatal COVID-19 autophagy dominated. Together, our findings highlight IDO2 as a potentially relevant effector enzyme in TBM, which may relate to the symptomology of TBM.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Mycobacterium tuberculosis , Tuberculosis Meníngea , Humanos , COVID-19 , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenasa/análisis , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación , Mycobacterium tuberculosis/metabolismo , Triptófano , Tuberculosis Meníngea/metabolismo , Tuberculosis Meníngea/patologíaRESUMEN
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
RESUMEN
The aim of this study was to evaluate the annual, seasonal and monthly trends in children with simple and complex appendicitis and their correlation to common viral pathogens in the Netherlands. A consecutive multicenter retrospective cohort study was performed between 2010 and 2019 including children (<18 years) surgically treated for appendicitis. The primary outcome was the distribution of children with simple and complex appendicitis per year, season and month. Relevant seasonal variation was defined as ≥5%. The secondary outcome was a positive correlation of the number of patients with simple and complex appendicitis to common viral pathogens (data anonymously provided by the Dutch Working Group on Clinical Virology from the Dutch Society for Clinical Microbiology (NVMM)). In total, 896 patients were included: N = 524 (58%) patients with simple and N = 372 (42%) with complex appendicitis. Of the children aged 0-5 years, 81% had complex appendicitis, versus 38% in 6-18 years (p < 0.001). An overall decline was demonstrated for both simple and complex appendicitis between 2010 and 2019. No seasonal variation was found for simple appendicitis. For complex appendicitis, the highest number of patients was found in spring, and lowest in summer (N = 372, spring 28.2 ± 5.1% versus summer 21.0 ± 5.8%, p = 0.011), but the variance was regarded as not relevant (<5% from baseline). A positive correlation was found between complex appendicitis with Adenovirus 40.41 (R = 0.356, 95%CI 0.045-0.604, p = 0.026) and simple appendicitis with Adenovirus NON 40.41 (R = 0.332, 95%CI 0.019-0.586, p = 0.039), but these correlations did not remain significant after a Bonferroni correction (p < 0.003). In conclusion, we found no relevant seasonal variation for simple or complex appendicitis, nor positive correlation with common viral pathogens.
RESUMEN
BACKGROUND: Children with SARS-CoV-2 related Multisystem Inflammatory Syndrome in Children (MIS-C) often present with clinical features that resemble Kawasaki disease (KD). Disease severity in adult COVID-19 is associated to the presence of anti-cytokine autoantibodies (ACAAs) against type I interferons. Similarly, ACAAs may be implicated in KD and MIS-C. Therefore, we explored the immunological response, presence of ACAAs and disease correlates in both disorders. METHODS: Eighteen inflammatory plasma protein levels and seven ACAAs were measured in KD (n = 216) and MIS-C (n = 56) longitudinally by Luminex and/or ELISA. Levels (up to 1 year post-onset) of these proteins were related to clinical data and compared with healthy paediatric controls. FINDINGS: ACAAs were found in both patient groups. The presence of ACAAs lagged behind the inflammatory plasma proteins and peaked in the subacute phase. ACAAs were mostly directed against IFN-γ (>80%) and were partially neutralising at best. KD presented with a higher variety of ACAAs than MIS-C. Increased levels of anti-IL-17A (P = 0·02) and anti-IL-22 (P = 0·01) were inversely associated with ICU admission in MIS-C. Except for CXCL10 in MIS-C (P = 0·002), inflammatory plasma proteins were elevated in both KD and MIS-C. Endothelial angiopoietin-2 levels were associated with coronary artery aneurysms in KD (P = 0·02); and sCD25 (P = 0·009), angiopoietin-2 (P = 0·001), soluble IL-33-receptor (ST2, P = 0·01) and CXCL10 (P = 0·02) with ICU admission in MIS-C. INTERPRETATION: Markers of endothelial activation (E-selectin, angiopoietin-2), and innate and adaptive immune responses (macrophages [CD163, G-CSF], neutrophils [lipocalin-2], and T cells [IFN-γ, CXCL10, IL-6, IL-17]), are upregulated in KD and MIS-C. ACAAs were detected in both diseases and, although only partly neutralising, their transient presence and increased levels in non-ICU patients may suggest a dampening role on inflammation. FUNDING: The Kawasaki study is funded by the Dutch foundation Fonds Kind & Handicap and an anonymous donor. The sponsors had no role in the study design, analysis, or decision for publication.
Asunto(s)
COVID-19 , Síndrome Mucocutáneo Linfonodular , Adulto , Humanos , Niño , Citocinas , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/diagnóstico , Angiopoyetina 2 , Estudios de Cohortes , SARS-CoV-2 , AutoanticuerposRESUMEN
Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives each year, is typically characterized by the formation of tuberculous granulomas - the histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which comprise a biologically diverse body of pro- and anti-inflammatory cells from the host immune responses, is based mainly upon examination of lungs, in both human and animal studies, but little on their counterparts from other organs of the TB patient such as the brain. The biological heterogeneity of TB granulomas has led to their diverse, relatively uncoordinated, categorization, which is summarized here. However, there is a pressing need to elucidate more fully the phenotype of the granulomas from infected patients. Newly emerging studies at the protein (proteomics) and metabolite (metabolomics) levels have the potential to achieve this. In this review we summarize the diverse nature of TB granulomas based upon the literature, and amplify these accounts by reporting on the relatively few, emerging proteomics and metabolomics studies on TB granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help us to understand the resultant phenotype. Nevertheless, more multidisciplinary 'omics studies, especially in human subjects, are required to contribute toward ushering in a new era of understanding of TB granulomas - both at the site of infection, and on a systemic level.
RESUMEN
Introduction: Recent studies have shown that specific cases of post-appendectomy abscess (PAA) in children could be treated conservatively. However, due to the lack of high-quality evidence, choice of treatment still depends on preferences of the treating surgeon, leading to heterogeneity in clinical practice. Therefore, we aimed to provide an update of recent literature on the management of PAA in children and subsequently evaluate the outcomes of a large multicenter cohort of children treated for PAA. Methods: A literature search was performed in Pubmed and Embase, selecting all randomized controlled trials, prospective and retrospective cohort studies, and case series published from 2014 and onward and reporting on children (<18 years) treated for a PAA. Subsequently, a historical cohort study was performed, including all children (<18 years) treated for a radiologically confirmed PAA between 2014 and 2021 in a tertiary referral center and two large peripheral centers. Medical charts were reviewed to compare non-invasive (i.e., antibiotics) and invasive (i.e., drainage procedures) treatment strategies. Primary outcome was the success rate of treatment, defined as no need for further interventions related to PAA or its complications. Results: The search yielded 1,991 articles, of which three were included. Treatment success ranged between 69-88% and 56-100% for non-invasive and invasive strategies, respectively. Our multicenter cohort study included 70 children with a PAA, of which 29 (41%) were treated non-invasively and 41 (59%) invasively. In the non-invasive group, treatment was effective in 21 patients (72%) compared to 25 patients (61%) in the invasive group. Non-invasive treatment was effective in 100% of unifocal small (<3 cm) and 80% of unifocal medium size PAA (3-6 cm), but not effective for multiple abscesses. Conclusion: Non-invasive treatment of especially unifocal small and medium size (<6 cm) PAA in children seems to be safe and effective. Based on these results, a standardized treatment protocol was developed. Prospective validation of this step-up approach-based treatment protocol is recommended.
RESUMEN
Much of the morbidity and mortality caused by tuberculous meningitis (TBM) is mediated by a dysregulated immune response. Effective host-directed therapy is therefore critical to improve survival and clinical outcomes. Currently only one host-directed therapy (HDT), corticosteroids, is proven to improve mortality. However, there is no evidence that corticosteroids reduce morbidity and the mechanism of action for mortality reduction is uncertain. Further, it has no proven benefit in HIV co-infected individuals. One promising host-directed therapy approach is to restrict the immunopathology arising from tumour necrosis factor (TNF)-α excess is via TNF-α inhibitors. There are accumulating data on the role of thalidomide, anti-TNF-α monoclonal antibodies (infliximab, adalimumab) and the soluble TNF-α receptor (etanercept) in TBM treatment. Thalidomide was developed nearly seventy years ago and has been a highly controversial drug. Birth defects and toxic adverse effects have limited its use but an improved understanding of its immunological mechanism of action suggest that it may have a crucial role in regulating the destructive host response seen in inflammatory conditions such as TBM. Observational studies at our institution found low dosage adjunctive thalidomide safe in treating tuberculous mass lesions and blindness related to optochiasmatic arachnoiditis, with good clinical and radiological response. In this review, we discuss possible mechanisms of action for thalidomide, based on our clinico-radiologic experience and post-mortem histopathological work. We also propose a rationale for its use in the treatment of certain TBM-related complications.
Asunto(s)
Talidomida/uso terapéutico , Tuberculosis Meníngea/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Antituberculosos/uso terapéutico , Niño , Citocinas/inmunología , Humanos , Tuberculosis Meníngea/inmunologíaRESUMEN
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut â brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain â gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
RESUMEN
This data article presents datasets associated with the research article entitled "The immunological architecture of granulomatous inflammation in central nervous system tuberculosis'' (Zaharie et al., 2020). The morphology of tuberculosis related granulomas within the central nervous system of human patients was visualized in six different three-dimensional (3D) models. Post-mortem, formalin fixed and paraffin embedded specimens from deceased tuberculous meningitis patients were immunohistochemically stained and 800 serial histologically stained sections were acquired. Images from all sections were obtained with an Olympus BX43 light microscope and structures were identified, labeled and made three-dimensional. The interactive 3D-models allows the user to directly visualize the morphology of the granulomas and to understand the localization of the granulomas. The 3D-models can be used for multiple purposes and provide both an educational source as a gold standard for further animal studies, human research and the development of in silico models on the topic of central nervous system tuberculosis.
RESUMEN
Of all tuberculosis (TB) cases, 1% affects the central nervous system (CNS), with a mortality rate of up to 60%. Our aim is to fill the 'key gap' in TBM research by analyzing brain specimens in a unique historical cohort of 84 patients, focusing on granuloma formation. We describe three different types: non-necrotizing, necrotizing gummatous, and necrotizing abscess type granuloma. Our hypothesis is that these different types of granuloma are developmental stages of the same pathological process. All types were present in each patient and were mainly localized in the leptomeninges. Intra-parenchymal granulomas were less abundant than the leptomeningeal ones and mainly located close to the cerebrospinal fluid (subpial and subependymal). We found that most of the intraparenchymal granulomas are an extension of leptomeningeal lesions which is the opposite of the classical Rich focus theory. We present a 3D-model to facilitate further understanding of the topographic relation of granulomas with leptomeninges, brain parenchyma and blood vessels. We describe innate and adaptive immune responses during granuloma formation including the cytokine profiles. We emphasize the presence of leptomeningeal B-cell aggregates as tertiary lymphoid structures. Our study forms a basis for further research in neuroinflammation and infectious diseases of the CNS, especially TB.