Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ecol Lett ; 27(1): e14336, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073071

RESUMEN

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.


Asunto(s)
Biodiversidad , Ecosistema
3.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36579623

RESUMEN

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Asunto(s)
Ecosistema , Bosques , Humanos , Filogenia , Biodiversidad , Agricultura Forestal
4.
Nature ; 536(7617): 456-9, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533038

RESUMEN

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Animales , Biomasa , Alemania , Pradera , Herbivoria , Insectos , Microbiología , Modelos Biológicos , Plantas
5.
New Phytol ; 232(1): 42-59, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197626

RESUMEN

Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.


Asunto(s)
Ecosistema , Plantas , Fenotipo , Hojas de la Planta
6.
Microb Ecol ; 79(3): 686-693, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31654107

RESUMEN

Carbon cycling models consider soil carbon sequestration a key process for climate change mitigation. However, these models mostly focus on abiotic soil processes and, despite its recognized critical mechanistic role, do not explicitly include interacting soil organisms. Here, we use a literature study to show that even a relatively simple soil community (heathland soils) contains large uncertainties in temporal and spatial food web structure. Next, we used a Lotka-Volterra-based food web model to demonstrate that, due to these uncertainties, climate change can either increase or decrease soil carbon sequestration to varying extents. Both the strength and direction of changes strongly depend on (1) the main consumer's (enchytraeid worms) feeding preferences and (2) whether decomposers (fungi) or enchytraeid worms are more sensitive to stress. Hence, even for a soil community with a few dominant functional groups and a simulation model with a few parameters, filling these knowledge gaps is a critical first step towards the explicit integration of soil food web dynamics into carbon cycling models in order to better assess the role soils play in climate change mitigation.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema , Suelo/química , Cadena Alimentaria , Modelos Biológicos , Microbiología del Suelo
7.
Oecologia ; 193(3): 535-545, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32419047

RESUMEN

Worldwide, stream water is increasingly loaded with sediments and nutrients, due to processes such as accelerated soil erosion and overfertilization caused by agricultural intensification. This leads to increases in eutrophication and silting up of bottom sediments. Floodplains can play an important role in mitigating these problems, by removing sediment from rivers via water filtration and retention. Fine sediment is accumulated on the soil in between plants as well as on plant surfaces. However, it is still poorly understood how plant species facilitate leaf surface sedimentation via their leaf traits. In a flume experiment, we investigated to what extent the leaf traits (area, length, perimeter, pinnation, pubescence, surface roughness, flexibility and wettability) influence leaf surface sedimentation. We exposed leaves of 30 plant species to an artificial flood, and measured the fine sediment load the leaves captured after 24 h. Our results show that leaf traits overall explain 65% of the variation of fine sedimentation on leaves. Especially adaxial pubescence and leaf area strongly drove sedimentation. Hairy leaves accumulate more sediment per leaf area, presumably, because hairs create a buffer zone of reduced flow velocity which enhances sedimentation between the hairs. Additionally, for leaves with no or few hairs, sedimentation decreased with increasing leaf area, because most likely the more turbulent boundary layer of larger leaves allows less sediment to settle. Our results provide a first understanding of how plants can be selected based on their leaf traits for maximizing the sediment retention on floodplains, thereby providing a key ecosystem service.


Asunto(s)
Ecosistema , Inundaciones , Sedimentos Geológicos , Hojas de la Planta , Ríos , Suelo
8.
Ecol Lett ; 22(1): 170-180, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30463104

RESUMEN

While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.


Asunto(s)
Biodiversidad , Árboles , Animales , Hongos
9.
Proc Biol Sci ; 286(1894): 20182193, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963868

RESUMEN

Bats and birds are key providers of ecosystem services in forests. How climate and habitat jointly shape their communities is well studied, but whether biotic predictors from other trophic levels may improve bird and bat diversity models is less known, especially across large bioclimatic gradients. Here, we achieved multi-taxa surveys in 209 mature forests replicated in six European countries from Spain to Finland, to investigate the importance of biotic predictors (i.e. the abundance or activity of defoliating insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic and functional diversity. We found that nine out of 12 bird and bat diversity metrics were best explained when biotic factors were added to models including climate and habitat variables, with a mean gain in explained variance of 38% for birds and 15% for bats. Tree functional diversity was the most important habitat predictor for birds, while bats responded more to understorey structure. The best biotic predictors for birds were spider abundance and defoliating insect activity, while only bat functional evenness responded positively to insect herbivory. Accounting for potential biotic interactions between bats, birds and other taxa of lower trophic levels will help to understand how environmental changes along large biogeographical gradients affect higher-level predator diversity in forest ecosystems.


Asunto(s)
Biodiversidad , Aves , Quirópteros , Bosques , Animales , Ambiente , Europa (Continente) , Modelos Biológicos
10.
Proc Natl Acad Sci U S A ; 113(13): 3557-62, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979952

RESUMEN

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Asunto(s)
Biodiversidad , Bosques , Simulación por Computador , Bases de Datos Factuales , Ecosistema , Europa (Continente) , Agricultura Forestal , Modelos Biológicos , Árboles
11.
Ecol Lett ; 21(1): 31-42, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143494

RESUMEN

Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Clima , Europa (Continente) , Humanos
12.
Ecol Lett ; 20(11): 1414-1426, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925074

RESUMEN

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Cambio Climático , Europa (Continente)
13.
J Anim Ecol ; 86(1): 158-169, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27740686

RESUMEN

Terrestrial ecosystems are characterized by a strong functional connection between the green (plant-herbivore-based) and brown (detritus-detritivore-based) parts of the food web, which both develop over successional time. However, the interlinked changes in green and brown food web diversity patterns in relation to key ecosystem processes are rarely studied. Here, we demonstrate changes in species richness, diversity and evenness over a wide range of invertebrate green and brown trophic groups during 100 years of primary succession in a saltmarsh ecosystem, using a well-calibrated chronosequence. We contrast two hypotheses on the relationship between green and brown food web diversity across succession: (i) 'coupled diversity hypothesis', which predicts that all trophic groups covary similarly with the main drivers of successional ecosystem assembly vs. (ii) the 'decoupled diversity hypothesis', where green and brown trophic groups diversity respond to different drivers during succession. We found that, while species richness for plants and invertebrate herbivores (green web groups) both peaked at intermediate productivity and successional age, the diversity of macrodetritivores, microarthropod microbivores and secondary consumers (brown web groups) continuously increased towards the latest successional stages. These results suggest that green web trophic groups are mainly driven by vegetation parameters, such as the amount of bare soil, vegetation biomass production and vegetation height, while brown web trophic groups are mostly driven by the production and standing stock of dead organic material and soil development. Our results show that plant diversity cannot simply be used as a proxy for the diversity of all other species groups that drive ecosystem functioning, as brown and green diversity components in our ecosystem responded differently to successional gradients.


Asunto(s)
Biodiversidad , Cadena Alimentaria , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Animales , Países Bajos , Dinámica Poblacional , Factores de Tiempo , Humedales
14.
Oecologia ; 175(2): 639-49, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24705648

RESUMEN

African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.


Asunto(s)
Saltamontes , Herbivoria , Animales , Tamaño Corporal , Ecosistema , Mamíferos , Plantas , Poaceae , Sudáfrica
15.
Trends Ecol Evol ; 38(6): 532-544, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36806396

RESUMEN

Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. ß-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of ß-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in ß-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between ß-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between ß-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa
16.
PLoS One ; 18(6): e0287039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384725

RESUMEN

Land-use intensification is one of the main drivers threatening biodiversity in managed grasslands. Despite multiple studies investigating the effect of different land-use components in driving changes in plant biodiversity, their effects are usually studied in isolation. Here, we establish a full factorial design crossing fertilization with a combined treatment of biomass removal, on 16 managed grasslands spanning a gradient in land-use intensity, across three regions in Germany. Specifically, we investigate the interactive effects of different land-use components on plant composition and diversity using structural equation modelling. We hypothesize that fertilization and biomass removal alter plant biodiversity, directly and indirectly, mediated through changes in light availability. We found that, direct and indirect effects of biomass removal on plant biodiversity were larger than effects of fertilization, yet significantly differed between season. Furthermore, we found that indirect effects of biomass removal on plant biodiversity were mediated through changes in light availability, but also by changes in soil moisture. Our analysis thus supports previous findings, that soil moisture may operate as an alternative indirect mechanism by which biomass removal may affect plant biodiversity. Most importantly, our findings highlight that in the short-term biomass removal can partly compensate the negative effects of fertilization on plant biodiversity in managed grasslands. By studying the interactive nature of different land-use drivers we advance our understanding of the complex mechanisms controlling plant biodiversity in managed grasslands, which ultimately may help to maintain higher levels of biodiversity in grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Suelo
17.
Sci Rep ; 13(1): 19663, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952061

RESUMEN

Despite evidence from grasslands experiments suggesting that plant species loss reduces biomass production, the strength of biodiversity-ecosystem functioning relationships in managed grasslands is still debated. High land-use intensity and reduced species pools are often suggested to make relationships between biodiversity and productivity less positive or even negative, but concrete evidence is still scarce. We investigated biodiversity-productivity relationships over two years in 150 managed grasslands in Germany. Specifically, we distinguished between relationships of biodiversity and biomass production in managed grasslands (1) varying in land-use intensity (e.g. of mowing, grazing and/or fertilization), (2) where land-use intensity is experimentally reduced, and (3) where additionally to land-use reductions, species pools are enlarged by seed addition. Among grasslands varying in land-use intensity, we found negative biodiversity-productivity relationships. Land-use reduction weakened these relationships, towards neutral, and sometimes, even positive relationships. Seed addition reduced species pool limitations, but this did not strengthen biodiversity-productivity relationships. Our findings indicate that land-use intensity is an important factor explaining the predominantly negative biodiversity-productivity relationships in managed grasslands. While we did not find that species pool limitations weakened biodiversity-productivity relationships, our results are based on a two-year-old experiment, possibly such effects are only visible in the long-term. Ultimately, advancing insights on biodiversity-ecosystem functioning relationships helps us to understand under which conditions agricultural production may benefit from promoting biodiversity.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Semillas
18.
Sci Total Environ ; 812: 152560, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34952080

RESUMEN

Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Biomasa , Bosques , Suelo
19.
PLoS One ; 16(3): e0248320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735182

RESUMEN

Sediment retention is a key ecosystem function provided by floodplains to filter sediments and nutrients from the river water during floods. Floodplain vegetation is an important driver of fine sediment retention. We aim to understand which structural properties of the vegetation are most important for capturing sediments. In a hydraulic flume experiment, we investigated this by disentangling sedimentation on and underneath 96 vegetation patches (40 cm x 60 cm). We planted two grass and two herb species in each patch and conducted a full-factorial manipulation of 1) vegetation density, 2) vegetation height, 3) structural diversity (small-tall vs tall-tall species combinations) and 4) leaf pubescence (based on trait information). We inundated the vegetation patches for 21 h in a flume with silt- and clay-rich water and subsequently measured the amount of accumulated sediment on the vegetation and on a fleece as ground underneath it. We quantified the sediment by washing it off the biomass and off the fleece, drying the sediment and weighting it. Our results showed that all manipulated vegetation properties combined (vegetation density and height, and the interaction of structural diversity and leaf pubescence) explained sedimentation on the vegetation (total R2 = 0.34). The sedimentation underneath the vegetation was explained by the structural diversity and the leaf pubescence (total R2 = 0.11). We further found that vegetation biomass positively affected the sedimentation on and underneath the vegetation. These findings are crucial for floodplain management strategies with the aim to increase sediment retention. Based on our findings, we can identify management strategies and target plant communities that are able to maximize a floodplain's ability to capture sediments.


Asunto(s)
Biodiversidad , Sedimentos Geológicos , Poaceae/fisiología , Ríos , Erosión del Suelo/prevención & control , Biomasa , Inundaciones
20.
PLoS One ; 16(12): e0252694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855757

RESUMEN

Sediment and nutrient retention are essential ecosystem functions that floodplains provide and that improve river water quality. During floods, the floodplain vegetation retains sediment, which settles on plant surfaces and the soil underneath plants. Both sedimentation processes require that flow velocity is reduced, which may be caused by the topographic features and the vegetation structure of the floodplain. However, the relative importance of these two drivers and their key components have rarely been both quantified. In addition to topographic factors, we expect vegetation height and density, mean leaf size and pubescence, as well as species diversity of the floodplain vegetation to increase the floodplain's capacity for sedimentation. To test this, we measured sediment and nutrients (carbon, nitrogen and phosphorus) both on the vegetation itself and on sediment traps underneath the vegetation after a flood at 24 sites along the River Mulde (Germany). Additionally, we measured biotic and topographic predictor variables. Sedimentation on the vegetation surface was positively driven by plant biomass and the height variation of the vegetation, and decreased with the hydrological distance (total R2 = 0.56). Sedimentation underneath the vegetation was not driven by any vegetation characteristics but decreased with hydrological distance (total R2 = 0.42). Carbon, nitrogen and phosphorus content in the sediment on the traps increased with the total amount of sediment (total R2 = 0.64, 0.62 and 0.84, respectively), while C, N and P on the vegetation additionally increased with hydrological distance (total R2 = 0.80, 0.79 and 0.92, respectively). This offers the potential to promote sediment and especially nutrient retention via vegetation management, such as adapted mowing. The pronounced signal of the hydrological distance to the river emphasises the importance of a laterally connected floodplain with abandoned meanders and morphological depressions. Our study improves our understanding of the locations where floodplain management has its most significant impact on sediment and nutrient retention to increase water purification processes.


Asunto(s)
Biomasa , Sedimentos Geológicos/química , Pradera , Ríos/química , Carbono/análisis , Alemania , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA