Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 197(8): 1394-407, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666133

RESUMEN

UNLABELLED: α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE: Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings, taken together, suggest that C. glutamicum MalP is the first α-glucan phosphorylase that does not fit into the current system for classification of bacterial α-glucan phosphorylases and exemplifies the complex mechanisms underlying the control of glycogen content and maltose metabolism in this model organism.


Asunto(s)
Adenosina Difosfato Glucosa/metabolismo , Corynebacterium glutamicum/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Fosforilasas/metabolismo , Transcripción Genética/fisiología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fosforilasas/genética
2.
J Bacteriol ; 194(5): 941-55, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178972

RESUMEN

Expression profiling of Corynebacterium glutamicum in comparison to a derivative deficient in the transcriptional regulator AtlR (previously known as SucR or MtlR) revealed eight genes showing more than 4-fold higher mRNA levels in the mutant. Four of these genes are located in the direct vicinity of the atlR gene, i.e., xylB, rbtT, mtlD, and sixA, annotated as encoding xylulokinase, the ribitol transporter, mannitol 2-dehydrogenase, and phosphohistidine phosphatase, respectively. Transcriptional analysis indicated that atlR and the four genes are organized as atlR-xylB and rbtT-mtlD-sixA operons. Growth experiments with C. glutamicum and C. glutamicum ΔatlR, ΔxylB, ΔrbtT, ΔmtlD, and ΔsixA derivatives with sugar alcohols revealed that (i) wild-type C. glutamicum grows on D-arabitol but not on other sugar alcohols, (ii) growth in the presence of D-arabitol allows subsequent growth on D-mannitol, (iii) D-arabitol is cometabolized with glucose and preferentially utilized over D-mannitol, (iv) RbtT and XylB are involved in D-arabitol but not in D-mannitol metabolism, (v) MtlD is required for D-arabitol and D-mannitol metabolism, and (vi) SixA is not required for growth on any of the substrates tested. Furthermore, we show that MtlD confers D-arabitol and D-mannitol dehydrogenase activities, that the levels of these and also xylulokinase activities are generally high in the C. glutamicum ΔatlR mutant, whereas in the parental strain, they were high when cells were grown in the presence of D-arabitol and very low when cells were grown in its absence. Our results show that the XylB, RbtT, and MtlD proteins allow the growth of C. glutamicum on D-arabitol and that D-arabitol metabolism is subject to arabitol-dependent derepression by AtlR.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Alcoholes del Azúcar/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Eliminación de Gen , Perfilación de la Expresión Génica , Glucosa/metabolismo , Manitol/metabolismo , Operón , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA