Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Addict Biol ; 24(1): 110-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29058369

RESUMEN

Alcohol metabolizing enzymes, such as the alcohol dehydrogenases and the aldehyde dehydrogenases, regulate the levels of acetaldehyde in the blood and play an important role in the development and maintenance of alcohol addiction. Recent genome-wide systematic searches found associations between a single nucleotide polymorphism (rs1789891, risk allele: A, protective allele: C) in the alcohol dehydrogenase gene cluster and the risk of alcohol dependence. The current study investigated the effect of this single nucleotide polymorphism on alcohol consumption, craving for alcohol, relapse risk and brain gray matter volume. Alcohol-dependent patients (n = 74) and controls (n = 43) were screened, genotyped and underwent magnetic resonance imaging scanning, and relapse data were collected during 3 months following the experiment. Alcohol-dependent A allele carriers reported increased alcohol craving and higher alcohol consumption compared with the group of alcohol-dependent individuals homozygous for the C allele, which displayed craving values similar to the control group. Further, follow-up data indicated that A allele carriers relapsed earlier to heavy drinking compared with individuals with two C alleles. Analyses of gray matter volume indicated a significant genotype difference in the patient group: individuals with two C alleles had reduced gray matter volume in the left and right superior, middle and inferior temporal gyri. Findings of the current study further support the relevance of genetic variants in alcohol metabolizing enzymes to addictive behavior, brain tissue volume and relapse risk. Genotype-dependent differences in acetaldehyde formation, implicated by earlier studies, might be the biological substrate of the genotype differences.


Asunto(s)
Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Ansia , Sustancia Gris/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/genética , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Recurrencia , Lóbulo Temporal/patología
2.
Am J Cancer Res ; 5(8): 2508-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26396927

RESUMEN

Alcohol intake is positively associated with the risk of upper aerodigestive tract (UADT) cancers; but its effect on gastric or colorectal cancer is controversial. Previous study had identified several single nucleotide polymorphisms (SNPs) of Alcohol Dehydrogenase (ADH) genes associated with UADT cancers in European and Japanese populations. We sought to determine if these SNPs associated with laryngeal, esophageal, gastric or colorectal cancer in Chinese population. We conducted a case-control study among 1577 cases and 1013 healthy controls from northwest China. Five SNPs associated with UADT cancers risk were selected from previous genome-wide association studies and genotyped using Sequenom Mass-ARRAY technology. Odds ratios and 95% confidence intervals (CIs) were calculated by unconditional logistic regression adjusting for age and gender. We identified that the minor alleles of rs1789924 and rs971074 were associated with decreased risk of laryngeal cancer (OR = 0.311; 95% CI = 0.161-0.602; P < 0.001) and esophagus cancer (OR = 0.711; 95% CI = 0.526-0.962; P = 0.027) in allelic model analysis, respectively. In the genetic model analysis, we found the "C/T" genotype of rs1789924 was associated with decreased laryngeal cancer risk in codominant model (P = 0.046) and overdominant model (P = 0.013); the "C/T-T/T" genotype of rs1789924 was associated with reduced risk of laryngeal cancer under dominant model (P = 0.013). Additionally, none of the SNPs was associated with gastric or colorectal cancer in our study. Our data shed new light on the association between ADH SNPs and respiratory and digestive tract cancers susceptibility in the Han Chinese population.

3.
Food Chem ; 132(1): 447-54, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26434314

RESUMEN

Clusters of Aleatico wine grape were picked at 18°Brix and placed at 10, 20, or 30°C, 45% relative humidity (RH) and 1.5m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0%, 10%, 20%, 30%, and 40% weight loss (wl). ADH (alcohol dehydrogenase) gene expression, enzyme activity, and related metabolites were analysed. At 10°C, acetaldehyde increased rapidly and then declined, while ethanol continued to rise. At 20°C, acetaldehyde and ethanol increased significantly with the same pattern and declined at 40%wl. At 30°C, acetaldehyde did not increase but ethanol increased rapidly already at 10%wl. At the latter temperature, a significant increase in acetic acid and ethyl acetate occurred, while at 10°C their values were low. At 30°C, the ADH activity (ethanol to acetaldehyde direction), increased rapidly but acetaldehyde did not rise because of its oxidation to acetic acid, which increased together with ethyl acetate. At 10°C, the ADH activity increased at 20%wl and continued to rise even at 40%wl, meaning that ethanol oxidation was delayed. At 20°C, the behaviour was intermediate to the other temperatures. The relative expression of the VvAdh2 gene was the highest at 10°C already at 10%wl in a synchrony with the ADH activity, indicating a rapid response likely due to low temperature. The expression subsequently declined. At 20 and 30°C, the expression was lower and increased slightly during dehydration in combination with the ADH activity. This imbalance between gene expression and ADH activity at 10°C, as well as the unexpected expression of the carotenoid cleavage dioxygenase 1 (CCD1) gene, opens the discussion on the stress sensitivity and transcription event during postharvest dehydration, and the importance of carefully monitoring temperature during dehydration.


Asunto(s)
Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Frutas/enzimología , Expresión Génica , Vitis , Agua/análisis , Acetaldehído/análisis , Ácido Acético/análisis , Desecación/métodos , Etanol/análisis , Manipulación de Alimentos/métodos , Frutas/química , Oxidación-Reducción , Temperatura
5.
HPB (Oxford) ; 10(2): 138-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18773092

RESUMEN

BACKGROUND AND AIMS: Chronic pancreatitis develops in 5-10% of alcohol addicts. In developed societies, alcohol is the cause of chronic pancreatitis in at least 70-80% of cases. The genetic polymorphism of enzymes involved in alcohol metabolism is relevant in the etiopathogenesis of chronic pancreatitis. The aim of the study was to find the ADH, ALDH2 and CYP2E1 alleles and genotypes in the Polish population that are likely to be responsible for higher susceptibility to chronic alcohol pancreatitis. MATERIAL AND METHODS: We determined the allele and genotype of ADH2, ADH3, ALDH2 and CYP2E1 in 141 subjects: 44 with alcohol chronic pancreatitis (ACP), 43 healthy alcoholics and 54 healthy non-drinkers as the controls. Genotyping was performed using PCR-RELP methods on white cell DNA. RESULTS: ADH2*1, ADH3*1 alleles and ADH2*1/*1, ADH3*1/*1 genotypes were statistically more frequent among the patients with ACP than among the controls. The ADH3*2/*2 genotype was more frequent among "healthy alcoholics" and in the controls than among those with ACP. In the studied group, only the ALDH2*1 allele was detected, all patients were ALDH2*1/*1 homozygotic. Differences in the CYP2E1 allele and genotype distribution in the examined groups were not significant. CONCLUSION: In the Polish population examined, ADH3*1 and ADH2*1 alleles may be risk factors for the development of alcoholism. The ADH3*2/*2 genotype may confer protection against ACP. CYP2E1 gene polymorphism is not related to alcoholism and ACP. The Polish population examined is ALDH2*1/*1 homozygotic.

6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(3): 257-261, Mar. 2010. tab
Artículo en Inglés | LILACS | ID: lil-539724

RESUMEN

Alcohol dependence poses a serious medical and sociological problem. It is influenced by multiple environmental and genetic factors, which may determine differences in alcohol metabolism. Genetic polymorphism of the enzymes involved in alcohol metabolism is highly ethnically and race dependent. The purpose of this study was to investigate the differences, if present, in the allele and genotype frequency of alcohol dehydrogenase 1B (ADH1B), ADH1C and the microsomal ethanol-oxidizing system (MEOS/CYP2E1) between alcohol-dependent individuals and controls and also to determine if these genotypes cause a difference in the age at which the patients become alcohol dependent. The allele and genotype frequencies of ADH1B, ADH1C, and CYP2E1 were determined in 204 alcohol dependent men and 172 healthy volunteers who do not drink alcohol (control group). Genotyping was performed by PCR-RFLP methods on white cell DNA. ADH1B*1 (99.3 percent) and ADH1C*1 (62.5 percent) alleles and ADH1B*1/*1 (N = 201) and ADH1C*1/*1 (N = 85) genotypes were statistically more frequent among alcohol-dependent subjects than among controls (99.3 and 62.5 percent, N = 201 and 85 vs 94.5 and 40.7 percent, N = 153 and 32, respectively). Differences in the CYP2E1 allele and genotype distribution between groups were not significant. The persons with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes became alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes (28.08, 25.67 years vs 36.0, 45.05, 34.45 years, respectively). In the Polish men examined, ADH1C*1 and ADH1B*1 alleles and ADH1C*1/*1 and ADH1B*1/*1 genotypes favor alcohol dependence. The ADH1B*2 allele may protect from alcohol dependence. However, subjects with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes become alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes.


Asunto(s)
Adolescente , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Alcohol Deshidrogenasa/genética , Alcoholismo/enzimología , /genética , Polimorfismo Genético/genética , Factores de Edad , Alcoholismo/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Frecuencia de los Genes/genética , Polonia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA