Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923019

RESUMEN

This study explores the specific role and underlying mechanisms of ALDH5A1 in the chemoresistance of esophageal squamous cell carcinoma (ESCC). The levels of cleaved caspase-3, 4-hydroxynonenal (4-HNE), intracellular Fe2+, and lipid reactive oxygen species (ROS) were evaluated via immunofluorescence. Cell viability and migration were quantified using cell counting kit-8 assays and wound healing assays, respectively. Flow cytometry was utilized to analyze cell apoptosis and ROS production. The concentrations of malondialdehyde (MDA) and reduced glutathione were determined by enzyme-linked immunosorbent assay. Proteome profiling was performed using data-independent acquisition. Additionally, a xenograft mouse model of ESCC was established to investigate the relationship between ALDH5A1 expression and the cisplatin (DDP)-resistance mechanism in vivo. ALDH5A1 is overexpressed in both ESCC patients and ESCC/DDP cells. Silencing of ALDH5A1 significantly enhances the inhibitory effects of DDP treatment on the viability and migration of KYSE30/DDP and KYSE150/DDP cells and promotes apoptosis. Furthermore, it intensifies DDP's suppressive effects on tumor volume and weight in nude mice. Gene ontology biological process analysis has shown that ferroptosis plays a crucial role in both KYSE30/DDP cells and KYSE30/DDP cells transfected with si-ALDH5A1. Our in vitro and in vivo experiments demonstrate that DDP treatment promotes the accumulation of ROS, lipid ROS, MDA, LPO, and intracellular Fe2+ content, increases the levels of proteins that promote ferroptosis (ACSL4 and FTH1), and decreases the expression of anti-ferroptosis proteins (SLC7A11, FTL, and GPX4). Silencing of ALDH5A1 further amplifies the regulatory effects of DDP both in vitro and in vivo. ALDH5A1 potentially acts as an oncogene in ESCC chemoresistance. Silencing of ALDH5A1 can reduce DDP resistance in ESCC through promoting ferroptosis signaling pathways. These findings suggest a promising strategy for the treatment of ESCC in clinical practice.

2.
J Sleep Res ; 33(4): e14105, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38148273

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Sistema Glinfático , Imagen por Resonancia Magnética , Trastornos del Sueño-Vigilia , Succionato-Semialdehído Deshidrogenasa , Ácido gamma-Aminobutírico , Humanos , Masculino , Femenino , Ácido gamma-Aminobutírico/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Trastornos del Sueño-Vigilia/fisiopatología , Sistema Glinfático/fisiopatología , Niño , Succionato-Semialdehído Deshidrogenasa/deficiencia , Espectroscopía de Resonancia Magnética , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/metabolismo , Acuaporina 4 , Laringoestenosis/fisiopatología , Preescolar , Discapacidades del Desarrollo
3.
J Inherit Metab Dis ; 47(3): 476-493, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581234

RESUMEN

Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Terapia Genética , Succionato-Semialdehído Deshidrogenasa , Transmisión Sináptica , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Terapia Genética/métodos , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Transmisión Sináptica/genética , Animales
4.
J Inherit Metab Dis ; 46(5): 992-1003, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37219411

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder with a variable phenotype and rate of progression. We aimed to develop and validate a clinical severity scoring (CSS) system applicable to the clinical setting and composed of five domains reflecting the principal manifestations of this disorder: cognitive, communication, motor, epilepsy, and psychiatry. A prospectively characterized cohort of 27 SSADHD subjects (55% females, median [IQR] age 9.2 [4.6-16.2] years) who enrolled in the SSADHD Natural History Study were included. The CSS was validated by comparison to an objective severity scoring (OSS) system based on comprehensive neuropsychologic and neurophysiologic assessments, which mirror and complement the domains of the CSS. The total CSS was sex and age-independent, and 80% of its domains lacked interdependence. With increasing age, there was a significant improvement in communication abilities (p = 0.05) and a worsening of epilepsy and psychiatric manifestations (p = 0.004 and p = 0.02, respectively). There was a significant correlation between all the CSS and OSS domain scores, as well as between the total CSS and OSS (R = 0.855, p < 0.001). Additionally, there were no significant demographic or clinical differences in the ratio of individuals in the upper quartile to the lower three quartiles of the CSS and OSS. The SSADHD CSS is validated using objective measures and offers a reliable condition-specific instrument universally applicable in clinical settings. This severity score may be utilized for family and patient counseling, genotype-phenotype correlations, biomarker development, clinical trials, and objective descriptions of the natural history of SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Epilepsia , Femenino , Masculino , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Succionato-Semialdehído Deshidrogenasa , Epilepsia/diagnóstico , Epilepsia/genética
5.
Balkan J Med Genet ; 26(1): 63-68, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37576789

RESUMEN

Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal-recessive disorder of gamma-aminobutyric acid (GABA) metabolism, resulting in accumulation of GABA and gamma-hydroxybutyric acid (GHB) in physiological fluids. Approximately 450 patients have been diagnosed worldwide with this inherited neurotransmitter disorder. We report on a five-year-old male patient, homozygous for the pathogenic variant (NM_170740:c.1265G>A) in ALDH5A1 presenting with an unexpected association of typical SSADH deficiency manifestations with bilateral sensorineural hearing loss (SNHL). Brainstem evoked response audiometry (BERA) testing showed mid-frequency sensorineural hearing damage that suggested a hereditary component to SNHL. Whole exome sequencing (WES) failed to discern other genetic causes of deafness. Several variants of uncertain significance (VUS) detected in genes known for their role in hearing physiology could not be verified as the cause for the SNHL. It is known that central auditory processing depends on a delicate balance between excitatory and inhibitory neurotransmission, and GABA is known to play a significant role in this process. Additionally, excessive concentrations of accumulated GABA and GBH are known to cause a down-regulation of GABA receptors, which could have an adverse influence on hearing function. However, these mechanisms are very speculative in context of SNHL in a patient with inherited disorder of GABA metabolism. Injury of the globi pallidi, one of hallmarks of SSADH deficiency, could also be a contributory factor to SNHL, as was suspected in some other inborn errors in metabolism. We hope that this case will contribute to the understanding of phenotypic complexity of SSADH deficiency.

6.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269750

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Succionato-Semialdehído Deshidrogenasa , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Niño , Discapacidades del Desarrollo/genética , Humanos , Ratones , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
7.
Epilepsia ; 62(1): e29-e34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33319393

RESUMEN

Increasing evidence indicates the pathogenetic relevance of regulatory genomic motifs for variability in the manifestation of brain disorders. In this context, cis-regulatory effects of single nucleotide polymorphisms (SNPs) on gene expression can contribute to changing transcript levels of excitability-relevant molecules and episodic seizure manifestation in epilepsy. Biopsy specimens of patients undergoing epilepsy surgery for seizure relief provide unique insights into the impact of promoter SNPs on corresponding mRNA expression. Here, we have scrutinized whether two linked regulatory SNPs (rs2744575; 4779C > G and rs4646830; 4854C > G) located in the aldehyde dehydrogenase 5a1 (succinic semialdehyde dehydrogenase; ALDH5A1) gene promoter are associated with expression of corresponding mRNAs in epileptic hippocampi (n = 43). The minor ALDH5A1-GG haplotype associates with significantly lower ALDH5A1 transcript abundance. Complementary in vitro analyses in neural cell cultures confirm this difference and further reveal a significantly constricted range for the minor ALDH5A1 haplotype of promoter activity regulation through the key epileptogenesis transcription factor Egr1 (early growth response 1). The present data suggest systematic analyses in human hippocampal tissue as a useful approach to unravel the impact of epilepsy candidate SNPs on associated gene expression. Aberrant ALDH5A1 promoter regulation in functional terms can contribute to impaired γ-aminobutyric acid homeostasis and thereby network excitability and seizure propensity.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Hipocampo/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Succionato-Semialdehído Deshidrogenasa/genética , Animales , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Perfilación de la Expresión Génica , Haplotipos , Hipocampo/patología , Humanos , Técnicas In Vitro , Ratones , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Ratas , Esclerosis
8.
Cell Biochem Funct ; 39(2): 317-325, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32881051

RESUMEN

Thyroid cancer is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for 80%-90% of thyroid cancers. Accumulating studies reported that mitochondria plays an important role in the regulation of cell proliferation. ALDH5A1, may function as an oncogene or tumour suppressor in various human cancers, and the role of ALDH5A1 in PTC is still unclear. The aim of this study was to investigate the clinical significance of ALDH5A1 expression and its functions in PTC. In this present study, we studied ALDH5A1 expression on primary papillary thyroid carcinoma (PTC) in The Cancer Genome Atlas (TCGA) database. Results showed that the levels of ALDH5A1 were found positively correlated with tumour stage, metastasis, lymph node stage, and higher levels of ALDH5A1 demonstrated poor disease-free survival (DFS). Immunohistochemistry (IHC) revealed that significantly higher expression of ALDH5A1 was found in PTC tissues. On the other hand, knockdown of ALDH5A1 significantly inhibited PTC cell proliferation, migration and invasion detection found the migration and invasion of cells also were hindered when ALDH5A1 level was reduced. The knockdown of ALDH5A1 inhibited the expression of Vimentin and promoted the expression of E-cadherin. In brief, knockdown of ALDH5A1may act as a novel molecular target for the prevention and treatment of PTC. SIGNIFICANCE OF THE STUDY: The present study focused on the role and the potential mechanism of ALDH5A1 in papillary thyroid carcinoma. We demonstrated that reduced expression of ALDH5A1 might inhibit the progression of TC by inhibiting cell proliferation, migration and invasion and reversing epithelial-mesenchymal transition (EMT). The findings ensured the interaction relation between ALDH5A1 and EMT in PTC, providing a novel biological marker for PTC and enriching the potential strategies for TC treatment.


Asunto(s)
Succionato-Semialdehído Deshidrogenasa/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Estadificación de Neoplasias , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Succionato-Semialdehído Deshidrogenasa/antagonistas & inhibidores , Succionato-Semialdehído Deshidrogenasa/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/mortalidad , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/mortalidad , Vimentina/metabolismo
9.
Mol Genet Metab ; 130(3): 172-178, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402538

RESUMEN

Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/patología , Discapacidades del Desarrollo/patología , Mutación Missense , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Simulación por Computador , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Células HEK293 , Humanos , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
10.
Gynecol Endocrinol ; 36(10): 929-933, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32223457

RESUMEN

Background: A considerable proportion of pediatric disease burden is mainly caused by inborn errors of metabolism. Succinic semi-aldehyde dehydrogenase (SSADH) deficiency is an unusual disorder of the gamma-aminobutyric acid metabolism. Till date, very few cases have been reported in China.Case presentation: Trio-WES was used to characterize the ALDH5A1 gene in two children of a Chinese family, who presented with seizures, psychomotor delay, development regression, borderline cognition, hypotonia, and harbored the compound heterozygotes NM_001080.3: c.1321G > A (p. Gly441Arg) and c.727_735del (p. Leu243_Ser245del). The former has been reported earlier (rs1041467895), whereas the latter is novel. Amino acid coding at highly conserved amino acid residues was observed to be altered by both mutations. This structural impairment influenced the enzyme structure as indicated by the in silico protein modeling. Cerebral magnetic resonance imaging of the proband and her brother showed excessive gap in the cerebrum and abnormal signals in the bilateral frontal lobe, bilateral basal ganglia, and cerebral foot. Elevated levels of Gamma-hydroxybutyric aciduria were found in their patients on urine organic acid analysis.Conclusion: Our findings contribute to the current knowledge of missense and deletion mutations associated with SSADH deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Succionato-Semialdehído Deshidrogenasa/deficiencia , Adulto , Femenino , Humanos , Recién Nacido , Mutación , Succionato-Semialdehído Deshidrogenasa/genética , Adulto Joven
11.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575506

RESUMEN

Succinate semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme, encoded by ALDH5A1, mainly involved in γ-aminobutyric acid (GABA) catabolism and energy supply of neuronal cells, possibly contributing to antioxidant defense. This study aimed to further investigate the antioxidant role of SSADH, and to verify if common SNPs of ALDH5A1 may affect SSADH activity, stability, and mitochondrial function. In this study, we used U87 glioblastoma cells as they represent a glial cell line. These cells were transiently transfected with a cDNA construct simultaneously harboring three SNPs encoding for a triple mutant (TM) SSADH protein (p.G36R/p.H180Y/p.P182L) or with wild type (WT) cDNA. SSADH activity and protein level were measured. Cell viability, lipid peroxidation, mitochondrial morphology, membrane potential (ΔΨ), and protein markers of mitochondrial stress were evaluated upon Paraquat treatment, in TM and WT transfected cells. TM transfected cells show lower SSADH protein content and activity, fragmented mitochondria, higher levels of peroxidized lipids, and altered ΔΨ than WT transfected cells. Upon Paraquat treatment, TM cells show higher cell death, lipid peroxidation, 4-HNE protein adducts, and lower ΔΨ, than WT transfected cells. These results reinforce the hypothesis that SSADH contributes to cellular antioxidant defense; furthermore, common SNPs may produce unstable, less active SSADH, which could per se negatively affect mitochondrial function and, under oxidative stress conditions, fail to protect mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Polimorfismo de Nucleótido Simple , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo , Sustitución de Aminoácidos , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Paraquat/efectos adversos , Señales de Clasificación de Proteína , Proteolisis , Succionato-Semialdehído Deshidrogenasa/química
12.
Mol Genet Metab ; 128(4): 397-408, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31699650

RESUMEN

Succinic semialdehyde dehydrogenase (SSADH) deficiency (SSADHD; OMIM 271980) is a rare disorder featuring accumulation of neuroactive 4-aminobutyric acid (GABA; γ-aminobutyric acid, derived from glutamic acid) and 4-hydroxybutyric acid (γ-hydroxybutyric acid; GHB, a short-chain fatty acid analogue of GABA). Elevated GABA is predicted to disrupt the GABA shunt linking GABA transamination to the Krebs cycle and maintaining the balance of excitatory:inhibitory neurotransmitters. Similarly, GHB (or a metabolite) is predicted to impact ß-oxidation flux. We explored these possibilities employing temporal metabolomics of dried bloodspots (DBS), quantifying amino acids, acylcarnitines, and guanidino- metabolites, derived from aldh5a1+/+, aldh5a1+/- and aldh5a1-/- mice (aldehyde dehydrogenase 5a1 = SSADH) at day of life (DOL) 20 and 42 days. At DOL 20, aldh5a1-/- mice had elevated C6 dicarboxylic (adipic acid) and C14 carnitines and threonine, combined with a significantly elevated ratio of threonine/[aspartic acid + alanine], in comparison to aldh5a1+/+ mice. Conversely, at DOL 42 aldh5a1-/- mice manifested decreased short chain carnitines (C0-C6), valine and glutamine, in comparison to aldh5a1+/+ mice. Guanidino species, including creatinine, creatine and guanidinoacetic acid, evolved from normal levels (DOL 20) to significantly decreased values at DOL 42 in aldh5a1-/- as compared to aldh5a1+/+ mice. Our results provide a novel temporal snapshot of the evolving metabolic profile of aldh5a1-/- mice while highlighting new pathomechanisms in SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Biomarcadores/sangre , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Redes y Vías Metabólicas , Metabolómica , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Discapacidades del Desarrollo/sangre , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Genotipo , Humanos , Metabolómica/métodos , Ratones , Ratones Noqueados , Oxidación-Reducción , Succionato-Semialdehído Deshidrogenasa/sangre , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
13.
BMC Med Genet ; 20(1): 88, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31117962

RESUMEN

BACKGROUND: Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessively-inherited defect of γ-aminobutyric acid (GABA) metabolism. The absence of SSADH, which is encoded by aldehyde dehydrogenase family 5 member A1 (ALDH5A1) gene, leads to the accumulation of GABA and γ-hydroxybutyric acid (GHB). Few cases with SSADH deficiency were reported in China. CASE PRESENTATION: In this study, four Chinese patients were diagnosed with SSADH deficiency in Tianjin Children's Hospital. We conducted a multidimensional analysis with magnetic resonance imaging (MRI) of the head, semi quantitative detection of urine organic acid using gas chromatography-mass spectrometry, and analysis of ALDH5A1 gene mutations. Two of the patients were admitted to the hospital due to convulsions, and all patients were associated with developmental delay. Cerebral MRI showed symmetrical hyperintense signal of bilateral globus pallidus and basal ganglia in patient 1; hyperintensity of bilateral frontal-parietal lobe, widened ventricle and sulci in patient 2; and widened ventricle and sulci in patient 4. Electroencephalogram (EEG) revealed the background activity of epilepsy in patient 1 and the disappearance of sleep spindle in patient 2. Urine organic acid analysis revealed elevated GHB in all the patients. Mutational analysis, which was performed by sequencing the 10 exons and flanking the intronic regions of ALDH5A1 gene for all the patients, revealed mutations at five sites. Two cases had homozygous mutations with c.1529C > T and c.800 T > G respectively, whereas the remaining two had different compound heterozygous mutations including c.527G > A/c.691G > A and c.1344-2delA/c.1529C > T. Although these four mutations have been described previously, the homozygous mutation of c.800 T > G in ALDH5A1 gene is a novel discovery. CONCLUSION: SSADH deficiency is diagnosed based on the elevated GHB and 4, 5DHHA by urinary organic acid analysis. We describe a novel mutation p.V267G (c.800 T > G) located in the NAD binding domain, which is possibly crucial for this disease's severity. Our study expands the mutation spectrum of ALDH5A1 and highlights the importance of molecular genetic evaluation in patients with SSADH deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Análisis Mutacional de ADN/métodos , Discapacidades del Desarrollo/genética , Mutación , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico por imagen , Errores Innatos del Metabolismo de los Aminoácidos/etnología , Pueblo Asiatico/genética , Preescolar , China , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/etnología , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Succionato-Semialdehído Deshidrogenasa/metabolismo
14.
Metab Brain Dis ; 34(5): 1515-1518, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267348

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive disorder of γ-aminobutyric acid (GABA) catabolism caused by mutations in the gene coding for succinic semialdehyde dehydrogenase (ALDH5A1). The abnormal levels of GHB detected in the brain and in all physiological fluids of SSADHD patients represent a diagnostic biochemical hallmark of the disease. Here we report on the clinical and molecular characterization of two unrelated Italian patients and the identification of two novel mutations: a 22 bp DNA duplication in exon 1, c.114_135dup, p.(C46AfsX97), and a non-sense mutation in exon 10, c.1429C > T, p.(Q477X). The two patients showed very different clinical phenotypes, coherent with their age. These findings enrich the characterization of SSADHD families and contribute to the knowledge on the progression of the disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Mutación , Succionato-Semialdehído Deshidrogenasa/deficiencia , Adulto , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Italia , Fenotipo , Succionato-Semialdehído Deshidrogenasa/genética
15.
Mol Genet Metab ; 124(3): 210-215, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29895405

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.526G>A (p.G176R), c.538C>T (p.H180Y), c.709G>T (p.A237S) and c.1267A>T (p.T423S), the latter never described so far. The patient inherited c.526A in cis with c.538T from the mother and c.709T in cis with c.1267T from the father. To explore the effects of the two allelic arrangements on SSADH activity and protein level, wild type, single or double mutated cDNA constructs were expressed in a cell system. The p.G176R change, alone or in combination with p.H180Y, causes the abolishment of enzyme activity. Western blot analysis showed a strongly reduced amount of the p.176R-p.180Y double mutant protein, suggesting increased degradation. Indeed, in silico analyses confirmed high instability of this mutant homotetramer. Enzyme activity relative to the other p.423S-p.237S double mutant is around 30% of wt. Further in silico analyses on all the possible combinations of mutant monomers suggest the lowest stability for the tetramer constituted by p.176R-p.180Y monomers and the highest stability for that constituted by p.237S-p.423S monomers. The present study shows that when a common SNP, associated with a slight reduction of SSADH activity, is inherited in cis with a mutation showing no consequences on the enzyme function, the activity is strongly affected. In conclusion, the peculiar arrangement of four missense mutations occurring in this patient is responsible for the SSADHD phenotype.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/patología , Discapacidades del Desarrollo/patología , Mutación Missense , Polimorfismo de Nucleótido Simple , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Preescolar , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Estabilidad de Enzimas , Femenino , Heterocigoto , Humanos , Masculino , Linaje , Conformación Proteica , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
16.
Acta Neuropathol ; 133(4): 645-660, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28032215

RESUMEN

Cell populations with differing proliferative, stem-like and tumorigenic states co-exist in most tumors and especially malignant gliomas. Whether metabolic variations can drive this heterogeneity by controlling dynamic changes in cell states is unknown. Metabolite profiling of human adult glioblastoma stem-like cells upon loss of their tumorigenicity revealed a switch in the catabolism of the GABA neurotransmitter toward enhanced production and secretion of its by-product GHB (4-hydroxybutyrate). This switch was driven by succinic semialdehyde dehydrogenase (SSADH) downregulation. Enhancing GHB levels via SSADH downregulation or GHB supplementation triggered cell conversion into a less aggressive phenotypic state. GHB affected adult glioblastoma cells with varying molecular profiles, along with cells from pediatric pontine gliomas. In all cell types, GHB acted by inhibiting α-ketoglutarate-dependent Ten-eleven Translocations (TET) activity, resulting in decreased levels of the 5-hydroxymethylcytosine epigenetic mark. In patients, low SSADH expression was correlated with high GHB/α-ketoglutarate ratios, and distinguished weakly proliferative/differentiated glioblastoma territories from proliferative/non-differentiated territories. Our findings support an active participation of metabolic variations in the genesis of tumor heterogeneity.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Glioma/metabolismo , Hidroxibutiratos/metabolismo , Células Madre Neoplásicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Carcinogénesis/patología , Muerte Celular/fisiología , Proliferación Celular/fisiología , Niño , Preescolar , Femenino , Glioma/patología , Glioma/cirugía , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Succionato-Semialdehído Deshidrogenasa/metabolismo
17.
Int J Legal Med ; 131(5): 1261-1270, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28534145

RESUMEN

Gamma-hydroxybutyric acid (GHB) acts as an agonist of the GABAB receptor, where GHB induces a depressant effect in the central nervous system. Besides its therapeutic application, GHB is also used as a date rape drug. However, the detection of GHB ingestion proves to be difficult due to its narrow detection window. The aim of this pilot study was to assess differential gene expressions after GHB intake to identify potential biomarkers for the detection of GHB intake. To this aim, alteration in gene expression of ALDH5A1, AKR7A2, EREG, and PEA15 was investigated via quantitative PCR (qPCR). Data normalization was based on a previously established and empirically derived normalization strategy. Blood samples of patients (n = 3) therapeutically taking sodium oxybate solution (GHB) and of donors without GHB intake (n = 49) were analyzed and compared. All qPCR procedures and results are reported according to the MIQE guidelines. Investigation of suitable reference genes using established algorithms suggested PPIB and FPGS as best-suited normalizers. Alterations in gene expression relating to GHB intake could not be confirmed to a forensically sufficient degree. However, significant differences in expression of EREG in the control group were observed, when time-point of sample collection was considered, indicating circadian rhythm. The study's main limitation is the small number of study subjects. Herein, we are first to present an empirically derived strategy for a robust normalization of qPCR data from the analysis of GHB-induced gene expression in human blood. We present results of the analysis of differential expression of ALDH5A1, AKR7A2, EREG, and PEA15 in the GHB-negative population. Finally, we report our findings on the effect of GHB intake on the expression of these genes and their presumable potential as GHB biomarkers.


Asunto(s)
Expresión Génica , Hidroxibutiratos/sangre , Adolescente , Adulto , Aldehído Reductasa/genética , Proteínas Reguladoras de la Apoptosis , Estudios de Casos y Controles , Epirregulina/genética , Femenino , Genética Forense , Toxicología Forense , Marcadores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Fosfoproteínas/genética , Proyectos Piloto , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Succionato-Semialdehído Deshidrogenasa/genética
18.
Metab Brain Dis ; 32(5): 1383-1388, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28664505

RESUMEN

SSADH deficiency (SSADHD) is a rare autosomal recessively inherited metabolic disorder. It is associated with mutations of ALDH5A1 gene, coding for the homotetrameric enzyme SSADH. This enzyme is involved in γ-aminobutyric acid (GABA) catabolism, since it oxidizes succinic semialdehyde (SSA) to succinate. Mutations in ALDH5A1 gene result in the abnormal accumulation of γ-hydroxybutyrate (GHB), which is pathognomonic of SSADHD. In the present report, diagnosis of SSADHD in a three-month-old female was achieved by detection of high levels of GHB in urine. Sequence analysis of ALDH5A1 gene showed that the patient was a compound heterozygote for c.1226G > A (p.G409D) and the novel missense mutation, c.1498G > C (p.V500 L). By ALDH5A1 gene expression in transiently transfected HEK293 cells and enzyme activity assays, we demonstrate that the p.V500 L mutation, despite being conservative, produces complete loss of enzyme activity. In silico protein modelling analysis and evaluation of tetramer destabilizing energies suggest that structural impairment and partial occlusion of the access channel to the active site affect enzyme activity. These findings add further knowledge on the missense mutations associated with SSADHD and the molecular mechanisms underlying the loss of the enzyme activity.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Succionato-Semialdehído Deshidrogenasa/deficiencia , Ácido gamma-Aminobutírico/análogos & derivados , Sitios de Unión , Simulación por Computador , ADN/genética , Femenino , Células HEK293 , Heterocigoto , Humanos , Lactante , Modelos Moleculares , Mutación/genética , Mutación Missense , Linaje , Oxibato de Sodio/orina , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/metabolismo
19.
BMC Med Genomics ; 17(1): 158, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862963

RESUMEN

BACKGROUND AND AIMS: To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS: This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS: Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS: A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Succionato-Semialdehído Deshidrogenasa , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Femenino , Masculino , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lactante , Estudios Retrospectivos , Pueblo Asiatico/genética , Mutación , China , Preescolar , Discapacidades del Desarrollo/genética , Imagen por Resonancia Magnética , Pueblos del Este de Asia
20.
Front Genet ; 15: 1405468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011401

RESUMEN

Genomic sequencing offers an untargeted, data-driven approach to genetic diagnosis; however, variants of uncertain significance often hinder the diagnostic process. The discovery of rare genomic variants without previously known functional evidence of pathogenicity often results in variants being overlooked as potentially causative, particularly in individuals with undifferentiated phenotypes. Consequently, many neurometabolic conditions, including those in the GABA (gamma-aminobutyric acid) catabolism pathway, are underdiagnosed. Succinic semialdehyde dehydrogenase deficiency (SSADHD, OMIM #271980) is a neurometabolic disorder in the GABA catabolism pathway. The disorder is due to bi-allelic pathogenic variants in ALDH5A1 and is usually characterized by moderate-to-severe developmental delays, hypotonia, intellectual disability, ataxia, seizures, hyperkinetic behavior, aggression, psychiatric disorders, and sleep disturbances. In this study, we utilized an integrated approach to diagnosis of SSADHD by examining molecular, clinical, and metabolomic data from a single large commercial laboratory. Our analysis led to the identification of 16 patients with likely SSADHD along with three novel variants. We also showed that patients with this disorder have a clear metabolomic signature that, along with molecular and clinical findings, may allow for more rapid and efficient diagnosis. We further surveyed all available pathogenic/likely pathogenic variants and used this information to estimate the global prevalence of this disease. Taken together, our comprehensive analysis allows for a global approach to the diagnosis of SSADHD and provides a pathway to improved diagnosis and potential incorporation into newborn screening programs. Furthermore, early diagnosis facilitates referral to genetic counseling, family support, and access to targeted treatments-taken together, these provide the best outcomes for individuals living with either GABA-TD or SSADHD, as well as other rare conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA