RESUMEN
Repeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines. We hypothesized that the ampakine-hypoxia interaction resulting in pMF requires that ampakine dosing precedes the onset of hypoxia. Phrenic nerve recordings were made from urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats during isocapnic conditions. Ampakine CX717 (15 mg/kg iv) was given immediately before (n = 8), during (n = 8), or immediately after (n = 8) a 5-min hypoxic episode (arterial oxygen partial pressure 40-45 mmHg). Ampakine before hypoxia (Aprior) resulted in a sustained increase in inspiratory phrenic burst amplitude (i.e., pMF) reaching +70 ± 21% above baseline (BL) after 60 min. This was considerably greater than corresponding values in the groups receiving ampakine during hypoxia (+28 ± 47% above BL, P = 0.005 vs. Aprior) or after hypoxia (+23 ± 40% above BL, P = 0.005 vs. Aprior). Phrenic inspiratory burst rate, heart rate, and systolic, diastolic, and mean arterial pressure (mmHg) were similar across the three treatment groups (all P > 0.3, treatment effect). We conclude that the presentation order of ampakine and hypoxia impacts the magnitude of pMF, with ampakine pretreatment evoking the strongest response. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY Phrenic motor facilitation (pMF) is evoked after repeated episodes of brief hypoxia. pMF can also be induced when an allosteric modulator of AMPA receptors (ampakine) is intravenously delivered immediately before a single brief hypoxic episode. Here we show that ampakine delivery before hypoxia (vs. during or after hypoxia) evokes the largest pMF with minimal impact on arterial blood pressure and heart rate. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.
Asunto(s)
Hipoxia , Uretano , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Anestésicos Intravenosos , Nervio Frénico/fisiologíaRESUMEN
Different brain areas have distinct roles in the processing and regulation of pain and thus may form specific pharmacological targets. Prior research has shown that AMPAkines, a class of drugs that increase glutamate signaling, can enhance descending inhibition from the prefrontal cortex (PFC) and nucleus accumbens. On the other hand, activation of neurons in the anterior cingulate cortex (ACC) is known to produce the aversive component of pain. The impact of AMPAkines on ACC, however, is not known. We found that direct delivery of CX516, a well-known AMPAkine, into the ACC had no effect on the aversive response to pain in rats. Furthermore, AMPAkines did not modulate the nociceptive response of ACC neurons. In contrast, AMPAkine delivery into the prelimbic region of the prefrontal cortex (PL) reduced pain aversion. These results indicate that the analgesic effects of AMPAkines in the cortex are likely mediated by the PFC but not the ACC.
Asunto(s)
Corteza Cerebral , Dolor , Ratas , Animales , Dolor/tratamiento farmacológico , Giro del Cíngulo/fisiología , Corteza Prefrontal , Analgésicos/farmacología , Analgésicos/uso terapéuticoRESUMEN
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulators (AMPAkines) have a multitude of promising therapeutic properties. The pharmaceutical development of high impact AMPAkines has, however, been limited by the appearance of calcium-dependent neuronal toxicity and convulsions in vivo. Such toxicity is not observed at exceptionally high concentrations of low impact AMPAkines. Because most AMPAR are somewhat impermeable to calcium, the current study sought to examine the extent to which different mechanisms contribute to the rise in intracellular calcium in the presence of high impact ampakines. In the presence of AMPA alone, cytosolic calcium elevation is shown to be sodium-dependent. In the presence of high impact AMPAkines such as cyclothiazide (CTZ) or CX614, however, AMPAR potentiation also activates an additional mechanism that induces calcium release from endoplasmic reticular (ER) stores. The pathway that connects AMPAR to the ER system involves a Gq-protein, phospholipase Cß-mediated inositol triphosphate (InsP3) formation, and ultimately stimulation of InsP3-receptors located on the ER. The same linkage was not observed using high concentrations of the low impact AMPAkines, CX516 (Ampalex), and CX717. We also demonstrate that CX614 produces neuronal hyper-excitability at therapeutic doses, whereas the newer generation low impact AMPAkine CX1739 is safe at exceedingly high doses. Although earlier studies have demonstrated a functional linkage between AMPAR and G-proteins, this report demonstrates that in the presence of high impact AMPAkines, AMPAR also couple to a Gq-protein, which triggers a secondary calcium release from the ER and provides insight into the disparate actions of high and low impact AMPAkines.
Asunto(s)
Calcio , Corteza Cerebral , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Neuronas , Receptores AMPA , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores AMPA/metabolismo , Calcio/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Células Cultivadas , Ratas , OxazinasRESUMEN
Repeated short episodes of hypoxia produce a sustained increase in phrenic nerve output lasting well beyond acute intermittent hypoxia (AIH) exposure (i.e., phrenic long-term facilitation; pLTF). Pretreatment with ampakines, drugs which allosterically modulate AMPA receptors, enables a single brief episode of hypoxia to produce pLTF, lasting up to 90 min after hypoxia. Here, we tested the hypothesis that ampakine pretreatment would enhance the magnitude of pLTF evoked by repeated bouts of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats. Initial experiments demonstrated that ampakine CX717 (15 mg/kg iv) caused an acute increase in phrenic nerve inspiratory burst amplitude reaching 70 ± 48% baseline (BL) after 2 min (P = 0.01). This increased bursting was not sustained (2 ± 32% BL at 60 min, P = 0.9). When CX717 was delivered 2 min before a single episode of isocapnic hypoxia (5 min, [Formula: see text] = 44 ± 9 mmHg), facilitation of phrenic nerve burst amplitude occurred (96 ± 62% BL at 60 min, P < 0.001). However, when CX717 was given 2 min before three, 5-min hypoxic episodes ([Formula: see text] = 45 ± 6 mmHg) pLTF was attenuated and did not reach statistical significance (24 ± 29% BL, P = 0.08). In the absence of CX717 pretreatment, pLTF was observed after three (74 ± 33% BL at 60 min, P < 0.001) but not one episode of hypoxia (1 ± 8% BL at 60 min, P = 0.9). We conclude that pLTF is not enhanced when ampakine pretreatment is followed by repeated bouts of hypoxia. Rather, the combination of ampakine and a single hypoxic episode appears to be ideal for producing sustained increase in phrenic motor output.NEW & NOTEWORTHY Pretreatment with ampakine CX717 created conditions that enabled an acute bout of moderate hypoxia to evoke phrenic motor facilitation, but this response was not observed when ampakine pretreatment was followed by intermittent hypoxia. Thus, in anesthetized and spinal intact rats, the combination of ampakine and one bout of hypoxia appears ideal for triggering respiratory neuroplasticity.
Asunto(s)
Hipoxia/fisiopatología , Isoxazoles/farmacología , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Receptores AMPA/efectos de los fármacos , Animales , Isoxazoles/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Phrenic long-term facilitation (LTF) is a sustained increase in phrenic motor output occurring after exposure to multiple (but not single) hypoxic episodes. Ampakines are a class of drugs that enhance AMPA receptor function. Ampakines can enhance expression of neuroplasticity, and the phrenic motor system is fundamentally dependent on excitatory glutamatergic currents. Accordingly, we tested the hypothesis that combining ampakine pretreatment with a single brief hypoxic exposure would result in phrenic motor facilitation lasting well beyond the period of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, ventilated, and vagotomized adult Sprague-Dawley rats. Ampakine CX717 (15 mg/kg iv; n = 8) produced a small increase in phrenic inspiratory burst amplitude and frequency, but values quickly returned to predrug baseline. When CX717 was followed 2 min later by a 5-min exposure to hypoxia (n = 8; PaO2 ~45 mmHg), a persistent increase in phrenic inspiratory burst amplitude (i.e., phrenic motor facilitation) was observed up to 60 min posthypoxia (103 ± 53% increase from baseline). In contrast, when hypoxia was preceded by vehicle injection (10% 2-hydroxypropyl-ß-cyclodextrin; n = 8), inspiratory phrenic bursting was similar to baseline values at 60 min. Additional experiments with another ampakine (CX1739, 15 mg/kg) produced comparable results. We conclude that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation. This targeted approach for enhancing respiratory neuroplasticity may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY A single brief episode of hypoxia (e.g., 3-5 min) does not evoke long-lasting increases in respiratory motor output after the hypoxia is concluded. Ampakines are a class of drugs that enhance AMPA receptor function. We show that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation after the acute hypoxic episode.
Asunto(s)
Hipoxia , Plasticidad Neuronal/fisiología , Nervio Frénico , Receptores AMPA/efectos de los fármacos , Respiración , Animales , Hipoxia/fisiopatología , Isoxazoles/farmacología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , VagotomíaRESUMEN
Fragile X syndrome (FXS) is associated with deficits in various types of learning, including those that require the hippocampus. Relatedly, hippocampal long-term potentiation (LTP) is impaired in the Fmr1 knockout (KO) mouse model of FXS. Prior research found that infusion of brain-derived neurotrophic factor (BDNF) rescues LTP in the KOs. Here, we tested if, in Fmr1 KO mice, up-regulating BDNF production or treatment with an agonist for BDNF's TrkB receptor restores synaptic plasticity and improves learning. In hippocampal slices, bath infusion of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) completely restored otherwise impaired hippocampal field CA1 LTP of Fmr1 KOs without effect in wild types (WTs). Similarly, acute, semi-chronic, or chronic treatments with 7,8-DHF rescued a simple hippocampus-dependent form of spatial learning (object location memory: OLM) in Fmr1 KOs without effect in WTs. The agonist also restored object recognition memory, which depends on cortical regions. Semi-chronic, but not acute, treatment with the ampakine CX929, which up-regulates BDNF expression, lowered the training threshold for OLM in WT mice and rescued learning in the KOs. Positive results were also obtained in a test for social recognition. An mGluR5 antagonist did not improve learning. Quantification of synaptic immunolabeling demonstrated that 7,8-DHF and CX929 increase levels of activated TrkB at excitatory synapses. Moreover, CX929 induced a robust synaptic activation of the TrkB effector ERK1/2. These results suggest that enhanced synaptic BDNF signaling constitutes a plausible strategy for treating certain aspects of the cognitive disabilities associated with FXS.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Glicoproteínas de Membrana/agonistas , Plasticidad Neuronal/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Flavanonas/farmacología , Masculino , Memoria , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Proteínas Tirosina QuinasasRESUMEN
Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.
Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Psicotrópicos/farmacología , Receptores AMPA/metabolismo , Regulación Alostérica , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/ultraestructura , Discapacidad Intelectual/patología , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de TejidosRESUMEN
UNLABELLED: Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT: These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.
Asunto(s)
Glutamatos/fisiología , Memoria/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Animales , Dioxoles/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Memoria a Corto Plazo/fisiología , Piperidinas/farmacología , Proteínas Proto-Oncogénicas c-fos/fisiología , Desempeño Psicomotor/fisiología , Piridonas/farmacología , Ratas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/fisiologíaRESUMEN
AMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Ampakines, positive allosteric modulators of AMPAR, hold significant potential for the treatment of a wide range of neurological/neuropsychiatric disorders in which excitatory synaptic transmission is compromised. Low-impact ampakines are a distinct subset of ampakines that accelerate channel opening yet minimally affect receptor desensitization, which may explain their lack of seizurogenic effects at therapeutic doses in preclinical models. CX1739 is a low-impact ampakine that has shown efficacy in preclinical studies. The current clinical study examined the tolerability and pharmacokinetics of CX1739 in healthy male volunteers in a 2-part study. Part A was a single dose escalation study (100-1200 mg, 48 patients) and Part B was a multiple dose ascending study (300-600 mg BID for 7-10 days, 32 patients). CX1739 was well tolerated up to 900 mg once daily (QD) and 450 mg twice a day, with the prominent side effects being headache and nausea. Importantly, the half-life of CX1739 was 6-9 hours, and Tmax was 1-5 hours. CX1739 Cmax and AUC were dose-proportional. These findings thus set the stage for further explorations of this drug candidate in phase 2 clinical studies.
RESUMEN
There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Aprendizaje Inverso , Proteínas Quinasas S6 Ribosómicas 90-kDa , Memoria Espacial , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Ratones Endogámicos C57BL , Nootrópicos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones NoqueadosRESUMEN
Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cisplatino , Ratas , Animales , Femenino , Cisplatino/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Regulación hacia Abajo , Calidad de Vida , Riluzol/farmacología , Hipocampo/metabolismo , Homólogo 4 de la Proteína Discs LargeRESUMEN
Aim: AMPA-glutamate receptor (AMPAR) dysfunction mediates multiple neurological/neuropsychiatric disorders. Ampakines bind AMPARs and allosterically enhance glutamate-elicited currents. This report describes the activity of the water-soluble ampakine CX1942 prodrug and the active moiety CX1763.Results: CX1763 and CX1942 enhance synaptic transmission in hippocampi of rats. CX1763 increases attention in the 5CSRTT in rats and reduces amphetamine-induced hyperactivity in mice. CX1942 potently reverses opioid-induced respiratory depression in rats. CX1942/CX1763 was effective at 2.5-10 mg/kg. CX1763 lacked epileptogenicity up to 1500 mg/kg in rats.Conclusion: These data document that CX1942 and CX1763 are active and without prominent side effects in multiple pre-clinical assays. CX1942 could serve as a prodrug for CX1763 with the advantage of high water solubility as in an intravenous formulation.
[Box: see text].
RESUMEN
Ampakines are synthetic molecules that allosterically modulate AMPA-type glutamate receptors. We tested the hypothesis that delivery of ampakines to the intrathecal space could stimulate neural drive to the diaphragm. Ampakine CX717 (20 mM, dissolved in 10 % HPCD) or an HPCD vehicle solution were delivered via a catheter placed in the intrathecal space at the fourth cervical segment in urethane-anesthetized, mechanically ventilated adult male Sprague-Dawley rats. The electrical activity of the phrenic nerve was recorded for 60-minutes following drug application. Intrathecal application of CX717 produced a gradual and sustained increase in phrenic inspiratory burst amplitude (n = 10). In contrast, application of HPCD (n = 10) caused no sustained change in phrenic motor output. Phrenic burst rate, heart rate, and mean arterial pressure were similar between CX717 and HPCD treated rats. We conclude that intrathecally delivered ampakines can modulate phrenic motor output. This approach may have value for targeted induction of spinal neuroplasticity in the context of neurorehabiliation.
Asunto(s)
Presión Arterial/efectos de los fármacos , Diafragma/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Isoxazoles/farmacología , Plasticidad Neuronal/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Animales , Inyecciones Espinales , Isoxazoles/administración & dosificación , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.
Asunto(s)
Dolor Agudo/fisiopatología , Dolor Crónico/fisiopatología , Vías Nerviosas/fisiopatología , Receptores AMPA/metabolismo , Dolor Agudo/complicaciones , Analgésicos/farmacología , Animales , Dolor Crónico/complicaciones , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inflamación/patología , Masculino , Vías Nerviosas/efectos de los fármacos , Neuralgia/complicaciones , Neuralgia/fisiopatología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Ratas Sprague-DawleyRESUMEN
Whole body plethysmography (WBP) monitors respiratory rate and depth but conventional analysis fails to capture the diversity of waveforms. Our first purpose was to develop a waveform cluster analysis method for quantifying dynamic changes in respiratory waveforms. WBP data, from adult Sprague-Dawley rats, were sorted into time domains and principle component analysis was used for hierarchical clustering. The clustering method effectively sorted waveforms into categories including sniffing, tidal breaths of varying duration, and augmented breaths (sighs). We next used this clustering method to quantify breathing after opioid (fentanyl) overdose and treatment with ampakine CX1942, an allosteric modulator of AMPA receptors. Fentanyl caused the expected decrease in breathing, but our cluster analysis revealed changes in the temporal appearance of inspiratory efforts. Ampakine CX1942 treatment shifted respiratory waveforms toward baseline values. We conclude that this method allows for rapid assessment of breathing patterns across extended data recordings. Expanding analyses to include larger portions of recorded WBP data may provide insight on how breathing is affected by disease or therapy.
RESUMEN
MECP2 mutations cause Rett syndrome (RTT), a severe and progressive neurodevelopmental disorder mainly affecting females. Although RTT patients exhibit delayed onset of symptoms, several evidences demonstrate that MeCP2 deficiency alters early development of the brain. Indeed, during early maturation, Mecp2 null cortical neurons display widespread transcriptional changes, reduced activity, and defective morphology. It has been proposed that during brain development these elements are linked in a feed-forward cycle where neuronal activity drives transcriptional and morphological changes that further increase network maturity. We hypothesized that the enhancement of neuronal activity during early maturation might prevent the onset of RTT-typical molecular and cellular phenotypes. Accordingly, we show that the enhancement of excitability, obtained by adding to neuronal cultures Ampakine CX546, rescues transcription of several genes, neuronal morphology, and responsiveness to stimuli. Greater effects are achieved in response to earlier treatments. In vivo, short and early administration of CX546 to Mecp2 null mice prolongs lifespan, delays the disease progression, and rescues motor abilities and spatial memory, thus confirming the value for RTT of an early restoration of neuronal activity.
Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Animales , Encéfalo/metabolismo , Femenino , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/metabolismo , Fenotipo , Síndrome de Rett/genéticaRESUMEN
Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.
Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Neuronas , Preparaciones Farmacéuticas , Corteza Prefrontal , RatasRESUMEN
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors increases phrenic motor output. Ampakines are a class of drugs that are positive allosteric modulators of AMPA receptors. We hypothesized that 1) ampakines can stimulate phrenic activity after incomplete cervical spinal cord injury (SCI), and 2) pairing ampakines with brief hypoxia could enable sustained facilitation of phrenic bursting. Phrenic activity was recorded ipsilateral (IL) and contralateral (CL) to C2 spinal cord hemisection (C2Hx) in anesthetized adult rats. Two weeks after C2Hx, ampakine CX717 (15 mg/kg, i.v.) increased IL (61 ± 46% baseline, BL) and CL burst amplitude (47 ± 26%BL) in 8 of 8 rats. After 90 min, IL and CL bursting remained above baseline (BL) in 7 of 8 rats. Pairing ampakine with a single bout of acute hypoxia (5-min, arterial partial pressure of O2 ~ 50 mmHg) had a variable impact on phrenic bursting, with some rats showing a large facilitation that exceeded the response of the ampakine alone group. At 8 weeks post-C2Hx, 7 of 8 rats increased IL (115 ± 117%BL) and CL burst amplitude (45 ± 27%BL) after ampakine. The IL burst amplitude remained above BL for 90-min in 7 of 8 rats; CL bursting remained elevated in 6 of 8 rats. The sustained impact of ampakine at 8 weeks was not enhanced by hypoxia exposure. Intravenous vehicle (10% 2-Hydroxypropyl-ß-cyclodextrin) did not increase phrenic bursting at either time point. We conclude that ampakines effectively stimulate neural drive to the diaphragm after cervical SCI. Pairing ampakines with a single hypoxic exposure did not consistently enhance phrenic motor facilitation.
Asunto(s)
Isoxazoles/uso terapéutico , Neuronas Motoras/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Vértebras Cervicales/lesiones , Diafragma/efectos de los fármacos , Diafragma/inervación , Diafragma/fisiología , Isoxazoles/farmacología , Masculino , Neuronas Motoras/fisiología , Técnicas de Cultivo de Órganos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatologíaRESUMEN
Background: Abuse of analgesic and sedative drugs often leads to severe respiratory depression and sometimes death. Approximately 69,000 people worldwide die annually from opioid overdoses. Purpose: This work aimed to investigate whether CX1739 can be used for emergency treatment of acute respiratory depression due to drug abuse. Results: First, the results clarify that CX1739 is a low-impact ampakine that can safely activate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors without causing excito-neurotoxicity. Second, CX1739 rapidly crossed the blood-brain barrier (Tmax = 2 min), which meets the requirement of rapid onset of action in vivo. Our work provides preliminarily confirmation that high-dose intravenous administration of CX1739 can immediately reverse respiratory depression in animal models of respiratory depression caused by opioid agonist 030418, pentobarbital sodium and ethanol.
Asunto(s)
Analgésicos Opioides/farmacología , Sustancias Protectoras/farmacología , Insuficiencia Respiratoria/tratamiento farmacológico , Analgésicos Opioides/síntesis química , Analgésicos Opioides/química , Animales , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Estructura Molecular , Sustancias Protectoras/síntesis química , Sustancias Protectoras/química , Ratas , Ratas Sprague-DawleyRESUMEN
Conventional antidepressant drugs elevate the availability of monoamine neurotransmitters. However, these pharmacological therapies have limited efficacy and a slow onset of action as main limitations. New glutamatergic drugs such as ketamine have shown promise as a rapid-acting antidepressant drugs although with adverse effects. The mechanism of action of ketamine is hypothesized to involve a dis-inhibition of cortical pyramidal neurons produced by an stimulation of AMPA receptors by glutamate. In this context, low-impact positive allosteric modulators of the AMPA receptors (a.k.a. ampakines) have been regarded as potential antidepressant drugs. Here, we have examined the behavioral, biochemical, and molecular effects of a low-impact ampakine, CX717. Our results show that CX717 has a rapid (30 min) but short-lasting (up to 24 h) antidepressant-like effect in the forced swim test. Intra-cortical infusion of CX717 increases the efflux of noradrenaline, dopamine, and serotonin, but not glutamate. However, systemic CX717 does not alter these neurotransmitters. CX717 also produced a rapid (up to 1 h) increase of brain-derived neurotrophic factor (BDNF) and a more sustained (up to 6 h) increase of p11. Overall, CX717 appears to possess a rapid but not sustained antidepressant action possibly caused by rapid increases of BDNF and p11.