Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983498

RESUMEN

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vesículas Extracelulares , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Macrófagos/metabolismo , Monocitos/metabolismo , Vesículas Extracelulares/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2210808120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37023125

RESUMEN

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Virulencia/genética , Fiebre Porcina Africana/prevención & control , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Genes Virales
3.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852886

RESUMEN

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , G-Cuádruplex , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Chlorocebus aethiops , Células Vero , Antivirales/farmacología , Antivirales/química , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Porfirinas/química , Porfirinas/farmacología , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/metabolismo , Replicación Viral/efectos de los fármacos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Aminoquinolinas
4.
J Virol ; 98(8): e0023124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38980063

RESUMEN

African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.


Asunto(s)
Virus de la Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Porcinos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Dominios Proteicos , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Secuencia de Aminoácidos
5.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353534

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Animales , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal/fisiología , Porcinos , Vacunas/metabolismo , Replicación Viral
6.
J Virol ; 98(1): e0159923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38169281

RESUMEN

African swine fever virus (ASFV) causes a highly contagious and deadly disease in domestic pigs and European wild boars, posing a severe threat to the global pig industry. ASFV CP204L, a highly immunogenic protein, is produced during the early stages of ASFV infection. However, the impact of CP204L protein-interacting partners on the outcome of ASFV infection is poorly understood. To accomplish this, coimmunoprecipitation and mass spectrometry analysis were conducted in ASFV-infected porcine alveolar macrophages (PAMs). We have demonstrated that sorting nexin 32 (SNX32) is a CP204L-binding protein and that CP204L interacted and colocalized with SNX32 in ASFV-infected PAMs. ASFV growth and replication were promoted by silencing SNX32 and suppressed by overexpressing SNX32. SNX32 degraded CP204L by recruiting the autophagy-related protein Ras-related protein Rab-1b (RAB1B). RAB1B overexpression inhibited ASFV replication, while knockdown of RAB1B had the opposite effect. Additionally, RAB1B, SNX32, and CP204L formed a complex upon ASFV infection. Taken together, this study demonstrates that SNX32 antagonizes ASFV growth and replication by recruiting the autophagy-related protein RAB1B. This finding extends our understanding of the interaction between ASFV CP204L and its host and provides new insights into exploring the relationship between ASFV infection and autophagy.IMPORTANCEAfrican swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease with a high mortality near 100% in domestic pigs. ASF virus (ASFV), which is the only member of the family Asfarviridae, is a dsDNA virus of great complexity and size, encoding more than 150 proteins. Currently, there are no available vaccines against ASFV. ASFV CP204L represents the most abundantly expressed viral protein early in infection and plays an important role in regulating ASFV replication. However, the mechanism by which the interaction between ASFV CP204L and host proteins affects ASFV replication remains unclear. In this study, we demonstrated that the cellular protein SNX32 interacted with CP204L and degraded CP204L by upregulating the autophagy-related protein RAB1B. In summary, this study will help us understand the interaction mechanism between CP204L and its host upon infection and provide new insights for the development of vaccines and antiviral drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Factores de Restricción Antivirales , Autofagia , Nexinas de Clasificación , Proteínas de Unión al GTP rab1 , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Sus scrofa/virología , Porcinos/virología , Nexinas de Clasificación/metabolismo , Factores de Restricción Antivirales/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Macrófagos/virología , Replicación Viral
7.
Curr Issues Mol Biol ; 46(8): 8268-8281, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39194705

RESUMEN

African swine fever virus (ASFV), a highly contagious pathogen characterized by a complex structure and a variety of immunosuppression proteins, causes hemorrhagic, acute, and aggressive infectious disease that severely injures the pork products and industry. However, there is no effective vaccine or treatment. The main reasons are not only the complex mechanisms that lead to immunosuppression but also the unknown functions of various proteins. This review summarizes the interaction between ASFV and the host immune system, along with the involvement of virulence-related genes and proteins, as well as the corresponding molecular mechanism of immunosuppression of ASFV, encompassing pathways such as cGAS-STING, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Janus Kinase (JAK) and JAK Signal Transducers and Activators of Transcription (STAT), apoptosis, and other modulation. The aim is to summarize the dynamic process during ASFV infection and entry into the host cell, provide a rational insight into development of a vaccine, and provide a better clear knowledge of how ASFV impacts the host.

8.
J Virol ; 97(6): e0035023, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37212688

RESUMEN

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Permeabilidad de la Membrana Celular , Proteínas de la Membrana , Proteínas Virales , Internalización del Virus , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Genoma Viral , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Permeabilidad de la Membrana Celular/genética
9.
J Virol ; 97(9): e0057723, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37199611

RESUMEN

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease in domestic pigs and wild boars. Domestic pigs infected with virulent African swine fever virus (ASFV) isolates have a high mortality, approaching 100%. Identification of ASFV genes related to virulence/pathogenicity and deletion of them are considered to be key steps in the development of live attenuated vaccines, because the ability of ASFV to escape host innate immune responses is related to viral pathogenicity. However, the relationship between the host antiviral innate immune responses and the pathogenic genes of ASFV has not been fully understood. In this study, the ASFV H240R protein (pH240R), a capsid protein of ASFV, was found to inhibit type I interferon (IFN) production. Mechanistically, pH240R interacted with the N-terminal transmembrane domain of stimulator of interferon genes (STING) and inhibited its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Additionally, pH240R inhibited the phosphorylation of interferon regulatory factor 3 (IRF3) and TANK binding kinase 1 (TBK1), leading to reduced production of type I IFN. Consistent with these results, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more type I IFN than infection with its parental strain, ASFV HLJ/18. We also found that pH240R may enhance viral replication via inhibition of type I IFN production and the antiviral effect of interferon alpha (IFN-α). Taken together, our findings provide a new explanation for the reduction of ASFV's replication ability by knockout of the H240R gene and a clue for the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease with a high mortality, approaching 100% in domestic pigs. However, the relationship between viral pathogenicity and immune evasion of ASFV is not fully understood, which limits the development of safe and effective ASF vaccines, specifically, live attenuated vaccines. In this study, we found that pH240R, as a potent antagonist, inhibited type I IFN production by targeting STING and inhibiting its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Furthermore, we also found that deletion of the H240R gene reduced viral pathogenicity by enhancing type I IFN production, which decreases ASFV replication. Taken together, our findings provide a clue for the development of an ASFV live attenuated vaccine via deleting the H240R gene.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Interferón Tipo I/inmunología , Sus scrofa , Porcinos , Vacunas Atenuadas
10.
J Virol ; 97(4): e0024723, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017515

RESUMEN

The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 104 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Eliminación de Gen , Genes Virales , Vacunas Virales , Factores de Virulencia , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/patogenicidad , Células Cultivadas , Genes Virales/genética , Histonas/genética , Porcinos , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Factores de Virulencia/genética
11.
J Virol ; 97(10): e0070423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768081

RESUMEN

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Eliminación de Gen , Genes Virales , Vacunas Atenuadas , Vacunas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/clasificación , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/patogenicidad , Sus scrofa/virología , Vacunas Atenuadas/inmunología , Proteínas Virales/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia , Replicación Viral , Genes Virales/genética
12.
J Virol ; 97(4): e0188922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022174

RESUMEN

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Proteínas del Envoltorio Viral , Replicación Viral , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Apoptosis/genética , Porcinos , Replicación Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Interacciones Microbiota-Huesped , Regulación hacia Abajo
13.
J Virol ; 97(3): e0197722, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815839

RESUMEN

African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-ß)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-ß, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-ß signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-ß. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón , Replicación Viral , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Inmunidad Innata , Interferón Tipo I/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Transducción de Señal , Porcinos , Proteínas Virales/genética , Proteínas Virales/inmunología , Replicación Viral/fisiología , Transporte Activo de Núcleo Celular/genética , Evasión Inmune/genética
14.
J Virol ; 97(2): e0122722, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656014

RESUMEN

African swine fever (ASF) is a highly contagious infectious disease of domestic pigs and wild boars caused by African swine fever virus (ASFV), with a mortality rate of up to 100%. In order to replicate efficiently in macrophages and monocytes, ASFV has evolved multiple strategies to evade host antiviral responses. However, the underlying molecular mechanisms by which ASFV-encoded proteins execute immune evasion are not fully understood. In this study, we found that ASFV pH240R strongly inhibits transcription, maturation, and secretion of interleukin-1ß (IL-1ß). Importantly, pH240R not only targeted NF-κB signaling but also impaired NLRP3 inflammasome activation. In this mechanism, pH240R interacted with NF-kappa-B essential modulator (NEMO), a component of inhibitor of kappa B kinase (IKK) complex and subsequently reduced phosphorylation of IκBα and p65. In addition, pH240R bonded to NLRP3 to inhibit NLRP3 inflammasome activation, resulting in reduced IL-1ß production. As expected, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more inflammatory cytokine expression both in vitro and in vivo than its parental ASFV HLJ/18 strain. Consistently, H240R deficiency reduced the viral pathogenicity in pigs compared with its parental strain. These findings reveal that the H240R gene is an essential virulence factor, and deletion of the H240R gene affects the pathogenicity of ASFV HLJ/18 by enhancing antiviral inflammatory responses, which provides insights for ASFV immune evasion mechanisms and development of attenuated live vaccines and drugs for prevention and control of ASF. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease of domestic pigs, with a high mortality approaching 100%. ASFV has spread rapidly worldwide and caused huge economic losses and ecological consequences. However, the pathogenesis and immune evasion mechanisms of ASFV are not fully understood, which limits the development of safe and effective ASF attenuated live vaccines. Therefore, investigations are urgently needed to identify virulence factors that are responsible for escaping the host antiviral innate immune responses and provide a new target for development of ASFV live-attenuated vaccine. In this study, we determined that the H240R gene is an essential virulence factor, and its depletion affects the pathogenicity of ASFV by enhancing NLRP3-mediated inflammatory responses, which provides theoretical support for the development of an ASFV attenuated live vaccine.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/patogenicidad , Eliminación de Gen , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Sus scrofa , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/inmunología
15.
J Virol ; 97(10): e0103023, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768082

RESUMEN

IMPORTANCE: African swine fever virus (ASFV) is the cause of the current major animal epidemic worldwide. This disease affects domestic pigs and wild boars, has spread since 2007 through Russia, Eastern Europe, and more recently to Western European countries, and since 2018 emerged in China, from where it spread throughout Southeast Asia. Recently, outbreaks have appeared in the Caribbean, threatening the Americas. It is estimated that more than 900,000 animals have died directly or indirectly from ASFV since 2021 alone. One of the features of ASFV infection is hemoadsorption (HAD), which has been linked to virulence, although the molecular and pathological basis of this hypothesis remains largely unknown. In this study, we have analyzed and identified the key players responsible of HAD, contributing to the identification of new determinants of ASFV virulence, the understanding of ASFV pathogenesis, and the rational development of new vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Hemabsorción , Señales de Clasificación de Proteína , Proteínas Virales , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/patogenicidad , Glicosilación , Porcinos/virología , Virulencia , Proteínas Virales/química , Proteínas Virales/metabolismo
16.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902401

RESUMEN

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Proteínas de la Membrana , Nucleótidos Cíclicos , Porcinos , Proteínas Virales , Animales , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/química , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/patogenicidad , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/antagonistas & inhibidores , Nucleótidos Cíclicos/metabolismo , Porcinos/inmunología , Porcinos/virología , Vacunas Atenuadas/inmunología , Proteínas Virales/metabolismo , Vacunas Virales/inmunología , Interacciones Microbiota-Huesped
17.
J Virol ; 97(2): e0194322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36722971

RESUMEN

Virus replication depends on a complex interplay between viral and host proteins. In the case of African swine fever virus (ASFV), a large DNA virus, only a few virus-host protein-protein interactions have been identified to date. In this study, we demonstrate that the ASFV protein CP204L interacts with the cellular homotypic fusion and protein sorting (HOPS) protein VPS39, blocking its association with the lysosomal HOPS complex, which modulates endolysosomal trafficking and promotes lysosome clustering. Instead, CP204L and VPS39 are targeted to virus factories and localized at the periphery of the virus DNA replication sites. Furthermore, we show that loss of VPS39 reduces the levels of virus proteins synthesized in the early phase of infection and delays ASFV replication but does not completely inhibit it. Collectively, these results identify a novel virus-host protein interaction that modulates host membrane rearrangement during infection and provide evidence that CP204L is a multifunctional protein engaged in distinct steps of the ASFV life cycle. IMPORTANCE African swine fever virus (ASFV) was first identified over a hundred years ago. Since then, much effort has been made to understand the pathogenesis of ASFV. However, the specific roles of many individual ASFV proteins during the infection remain enigmatic. This study provides evidence that CP204L, one of the most abundant ASFV proteins, modulates endosomal trafficking during virus infection. Through protein-protein interaction, CP204L prevents the recruitment of VPS39 to the endosomal and lysosomal membranes, resulting in their accumulation. Consequently, CP204L and VPS39 become sequestered in the ASFV replication and assembly site, known as the virus factory. These results uncover a novel function of viral protein CP204L and extend our understanding of complex interaction between virus and host.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Virales , Replicación Viral , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Lisosomas/metabolismo , Transporte de Proteínas , Porcinos , Vacuolas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
J Virol ; 97(8): e0074823, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37534905

RESUMEN

Proliferating cell nuclear antigen (PCNA) belongs to the DNA sliding clamp family. Via interacting with various partner proteins, PCNA plays critical roles in DNA replication, DNA repair, chromatin assembly, epigenetic inheritance, chromatin remodeling, and many other fundamental biological processes. Although PCNA and PCNA-interacting partner networks are conserved across species, PCNA of a given species is rarely functional in heterologous systems, emphasizing the importance of more representative PCNA studies. Here, we report two crystal structures of PCNA from African swine fever virus (ASFV), which is the only member of the Asfarviridae family. Compared to the eukaryotic and archaeal PCNAs and the sliding clamp structural homologs from other viruses, AsfvPCNA possesses unique sequences and/or conformations at several regions, such as the J-loop, interdomain-connecting loop (IDCL), P-loop, and C-tail, which are involved in partner recognition or modification of sliding clamps. In addition to double-stranded DNA binding, we also demonstrate that AsfvPCNA can modestly enhance the ligation activity of the AsfvLIG protein. The unique structural features of AsfvPCNA can serve as a potential target for the development of ASFV-specific inhibitors and help combat the deadly virus. IMPORTANCE Two high-resolution crystal structures of African swine fever virus proliferating cell nuclear antigen (AsfvPCNA) are presented here. Structural comparison revealed that AsfvPCNA is unique at several regions, such as the J-loop, the interdomain-connecting loop linker, and the P-loop, which may play important roles in ASFV-specific partner selection of AsfvPCNA. Unlike eukaryotic and archaeal PCNAs, AsfvPCNA possesses high double-stranded DNA-binding affinity. Besides DNA binding, AsfvPCNA can also modestly enhance the ligation activity of the AsfvLIG protein, which is essential for the replication and repair of ASFV genome. The unique structural features make AsfvPCNA a potential target for drug development, which will help combat the deadly virus.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antígeno Nuclear de Célula en Proliferación , Proteínas Virales , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , ADN/química , Conformación Molecular , Antígeno Nuclear de Célula en Proliferación/química , Porcinos , Proteínas Virales/química
19.
Vet Res ; 55(1): 42, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575961

RESUMEN

African Swine Fever virus (ASFV), the causative agent of African swine fever, is a highly lethal hemorrhagic virus affecting domestic pigs and wild boars. The primary target cells for ASFV infection are porcine alveolar macrophages (PAMs), which are difficult to obtain and maintain in vitro, and less subjective to genetic editing. To overcome these issues and facilitate ASFV research, we obtained a subclonal cell line PK1-C5 by subcloning LLC-PK1 cells that support stable ASFV proliferation. This consequential cell line exhibited high ASFV infection levels and similar viral growth characteristics to PAMs, while also allowing high-efficiency genomic editing through transfection or lentivirus transduction of Cas9. Taken together, our study provided a valuable tool for research aspects including ASFV-host interactions, pathogenicity, and vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Sus scrofa , Línea Celular , Riñón
20.
Vet Res ; 55(1): 89, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010163

RESUMEN

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Porcinos , Esparcimiento de Virus , Viremia/veterinaria , Viremia/virología , Carga Viral/veterinaria , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA