Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.705
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 201-224, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30576253

RESUMEN

The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.


Asunto(s)
Actinas/metabolismo , Actomiosina/metabolismo , Células Presentadoras de Antígenos/metabolismo , Citoesqueleto/metabolismo , Sinapsis Inmunológicas/metabolismo , Linfocitos T/metabolismo , Animales , Presentación de Antígeno , Humanos , Activación de Linfocitos
2.
Annu Rev Biochem ; 92: 411-433, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001141

RESUMEN

Muscles are essential for movement and heart function. Contraction and relaxation of muscles rely on the sliding of two types of filaments-the thin filament and the thick myosin filament. The thin filament is composed mainly of filamentous actin (F-actin), tropomyosin, and troponin. Additionally, several other proteins are involved in the contraction mechanism, and their malfunction can lead to diverse muscle diseases, such as cardiomyopathies. We review recent high-resolution structural data that explain the mechanism of action of muscle proteins at an unprecedented level of molecular detail. We focus on the molecular structures of the components of the thin and thick filaments and highlight the mechanisms underlying force generation through actin-myosin interactions, as well as Ca2+-dependent regulation via the dihydropyridine receptor, the ryanodine receptor, and troponin. We particularly emphasize the impact of cryo-electron microscopy and cryo-electron tomography in leading muscle research into a new era.


Asunto(s)
Actinas , Contracción Muscular , Actinas/metabolismo , Microscopía por Crioelectrón , Contracción Muscular/fisiología , Troponina/química , Troponina/metabolismo , Miosinas/genética , Calcio/metabolismo
3.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37044097

RESUMEN

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Asunto(s)
Citoesqueleto , Eritrocitos , Animales , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Espectrina/análisis , Espectrina/metabolismo , Porcinos
4.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311454

RESUMEN

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Asunto(s)
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/fisiología
5.
Cell ; 185(19): 3588-3602.e21, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113429

RESUMEN

The current dogma of RNA-mediated innate immunity is that sensing of immunostimulatory RNA ligands is sufficient for the activation of intracellular sensors and induction of interferon (IFN) responses. Here, we report that actin cytoskeleton disturbance primes RIG-I-like receptor (RLR) activation. Actin cytoskeleton rearrangement induced by virus infection or commonly used reagents to intracellularly deliver RNA triggers the relocalization of PPP1R12C, a regulatory subunit of the protein phosphatase-1 (PP1), from filamentous actin to cytoplasmic RLRs. This allows dephosphorylation-mediated RLR priming and, together with the RNA agonist, induces effective RLR downstream signaling. Genetic ablation of PPP1R12C impairs antiviral responses and enhances susceptibility to infection with several RNA viruses including SARS-CoV-2, influenza virus, picornavirus, and vesicular stomatitis virus. Our work identifies actin cytoskeleton disturbance as a priming signal for RLR-mediated innate immunity, which may open avenues for antiviral or adjuvant design.


Asunto(s)
Actinas , COVID-19 , Citoesqueleto de Actina , Antivirales , Humanos , Interferones , Ligandos , Proteína Fosfatasa 1 , ARN , ARN Helicasas , Receptores de Ácido Retinoico/metabolismo , SARS-CoV-2
6.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055200

RESUMEN

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Asunto(s)
Axones/fisiología , Cromatina/química , Cilios , Sinapsis , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cilios/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Serotonina/metabolismo , Transducción de Señal , Sinapsis/fisiología
7.
Annu Rev Cell Dev Biol ; 39: 307-329, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37406300

RESUMEN

Filopodia are dynamic cell surface protrusions used for cell motility, pathogen infection, and tissue development. The molecular mechanisms determining how and where filopodia grow and retract need to integrate mechanical forces and membrane curvature with extracellular signaling and the broader state of the cytoskeleton. The involved actin regulatory machinery nucleates, elongates, and bundles actin filaments separately from the underlying actin cortex. The refined membrane and actin geometry of filopodia, importance of tissue context, high spatiotemporal resolution required, and high degree of redundancy all limit current models. New technologies are improving opportunities for functional insight, with reconstitution of filopodia in vitro from purified components, endogenous genetic modification, inducible perturbation systems, and the study of filopodia in multicellular environments. In this review, we explore recent advances in conceptual models of how filopodia form, the molecules involved in this process, and our latest understanding of filopodia in vitro and in vivo.

8.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765442

RESUMEN

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animales , Microscopía por Crioelectrón , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Tropomiosina/química , Tropomiosina/metabolismo
9.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34081922

RESUMEN

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Asunto(s)
Reactividad Cruzada/inmunología , Gelsolina/metabolismo , Inmunidad , Lectinas Tipo C/metabolismo , Neoplasias/inmunología , Receptores Inmunológicos/metabolismo , Receptores Mitogénicos/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reactividad Cruzada/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Gelsolina/química , Gelsolina/deficiencia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad/efectos de los fármacos , Ratones Endogámicos C57BL , Mutación/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Análisis de Supervivencia
10.
Cell ; 180(1): 165-175.e16, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31862189

RESUMEN

The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Tubulina (Proteína)/ultraestructura , Actinas/metabolismo , Microscopía por Crioelectrón/métodos , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
11.
Annu Rev Biochem ; 88: 661-689, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30649923

RESUMEN

Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.


Asunto(s)
Citocinesis , Eucariontes/fisiología , Huso Acromático/metabolismo , Actinas/metabolismo , Animales , Ciclo Celular , Eucariontes/metabolismo , Humanos , Modelos Biológicos , Miosinas/metabolismo , Transducción de Señal , Huso Acromático/fisiología , Levaduras/metabolismo , Levaduras/fisiología
12.
Cell ; 177(6): 1463-1479.e18, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31080065

RESUMEN

Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.


Asunto(s)
Actinas/metabolismo , Ciclo Celular/fisiología , Oocitos/metabolismo , Actinas/fisiología , Animales , Polaridad Celular/fisiología , Citoplasma/metabolismo , Yema de Huevo/fisiología , Polimerizacion , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Cigoto
13.
Cell ; 179(1): 120-131.e13, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539492

RESUMEN

Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.


Asunto(s)
Adhesiones Focales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Talina/química , Talina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Sitios de Unión , Adhesión Celular/fisiología , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Dimerización , Escherichia coli/metabolismo , Humanos , Integrinas/metabolismo , Modelos Moleculares , Unión Proteica , Transducción de Señal/fisiología , Vinculina/metabolismo
14.
Cell ; 177(4): 806-819, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051105

RESUMEN

Over the last several decades, an impressive array of advanced microscopic and analytical tools, such as single-particle tracking and nanoscopic fluorescence correlation spectroscopy, has been applied to characterize the lateral organization and mobility of components in the plasma membrane. Such analysis can tell researchers about the local dynamic composition and structure of membranes and is important for predicting the outcome of membrane-based reactions. However, owing to the unresolved complexity of the membrane and the structures peripheral to it, identification of the detailed molecular origin of the interactions that regulate the organization and mobility of the membrane has not proceeded quickly. This Perspective presents an overview of how cell-surface structure may give rise to the types of lateral mobility that are observed and some potentially fruitful future directions to elucidate the architecture of these structures in more molecular detail.


Asunto(s)
Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/fisiología , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/química , Proteínas de la Membrana/fisiología
15.
Cell ; 177(7): 1738-1756.e23, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31104842

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the ß1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.


Asunto(s)
Integrina beta1/metabolismo , Mecanotransducción Celular , Microdominios de Membrana/metabolismo , Secuencias de Aminoácidos , Animales , Células CHO , Cricetulus , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina beta1/genética , Microdominios de Membrana/genética , Vinculina/genética , Vinculina/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
16.
Annu Rev Cell Dev Biol ; 36: 35-60, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021819

RESUMEN

Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Humanos , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Schizosaccharomyces/metabolismo
17.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
18.
Cell ; 174(4): 884-896.e17, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057119

RESUMEN

Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Endocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretoras/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Membrana Celular/metabolismo , Microscopía Fluorescente , Modelos Teóricos , Conformación Proteica , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química
19.
Cell ; 174(2): 325-337.e14, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887380

RESUMEN

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Células HeLa , Humanos , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microscopía Fluorescente , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src
20.
Cell ; 174(6): 1507-1521.e16, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100183

RESUMEN

The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.


Asunto(s)
Actinas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Actinas/química , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Chaperonina 10/química , Chaperonina 60/química , Microscopía por Crioelectrón , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Medición de Intercambio de Deuterio , Humanos , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA