Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142679

RESUMEN

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombosis/metabolismo , Animales , Arterias/lesiones , Arterias/metabolismo , Arterias/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/patología , Muerte Súbita Cardíaca/patología , Glutamina/sangre , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolómica/métodos , Ratones , Infarto del Miocardio/sangre , Infarto del Miocardio/microbiología , Activación Plaquetaria/genética , Receptores Adrenérgicos alfa/sangre , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangre , Receptores Adrenérgicos beta/genética , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/patología , Trombosis/genética , Trombosis/microbiología , Trombosis/patología
2.
Cell ; 180(1): 64-78.e16, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31923400

RESUMEN

Enteric-associated neurons (EANs) are closely associated with immune cells and continuously monitor and modulate homeostatic intestinal functions, including motility and nutrient sensing. Bidirectional interactions between neuronal and immune cells are altered during disease processes such as neurodegeneration or irritable bowel syndrome. We investigated the effects of infection-induced inflammation on intrinsic EANs (iEANs) and the role of intestinal muscularis macrophages (MMs) in this context. Using murine models of enteric infections, we observed long-term gastrointestinal symptoms, including reduced motility and loss of excitatory iEANs, which was mediated by a Nlrp6- and Casp11-dependent mechanism, depended on infection history, and could be reversed by manipulation of the microbiota. MMs responded to luminal infection by upregulating a neuroprotective program via ß2-adrenergic receptor (ß2-AR) signaling and mediated neuronal protection through an arginase 1-polyamine axis. Our results identify a mechanism of neuronal death post-infection and point to a role for tissue-resident MMs in limiting neuronal damage.


Asunto(s)
Mucosa Intestinal/inmunología , Macrófagos/inmunología , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Animales , Arginasa/metabolismo , Caspasas Iniciadoras/inmunología , Caspasas Iniciadoras/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo , Femenino , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Infecciones , Inflamación/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/inmunología , Intestinos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Neuronas/fisiología , Receptores Adrenérgicos beta 2/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Transducción de Señal
3.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610084

RESUMEN

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Interleucina-6/metabolismo , Estrés Psicológico , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Gluconeogénesis , Hiperglucemia/metabolismo , Hiperglucemia/patología , Interleucina-6/sangre , Interleucina-6/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética
4.
Immunity ; 49(1): 93-106.e7, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958804

RESUMEN

There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the ß2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.


Asunto(s)
Diabetes Mellitus/fisiopatología , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Mielopoyesis , Neuroinmunomodulación , Sistema Nervioso Simpático/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Leucocitos/enzimología , Leucocitos/metabolismo , Masculino , Ratones , Células Mieloides/citología , Mielopoyesis/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Norepinefrina/sangre , Transducción de Señal/efectos de los fármacos , Bazo/citología , Bazo/inervación , Bazo/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos
5.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37989594

RESUMEN

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Asunto(s)
Astrocitos , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Masculino , Femenino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrocitos/metabolismo , Células Piramidales/fisiología , Corteza Prefrontal/fisiología , Ácido Glutámico/fisiología , Receptores Adrenérgicos beta , Sinapsis/fisiología
6.
Annu Rev Pharmacol Toxicol ; 62: 1-18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34339291

RESUMEN

This review is a somewhat chronological tale of my scientific life, emphasizing the why of the questions we asked in the lab and lessons learned that may be of value to nascent scientists. The reader will come to realize that the flow of my life has been driven by a combined life of the mind and life of the soul, intertwining like the strands of DNA.


Asunto(s)
Médicos , Humanos
7.
Brain ; 147(4): 1377-1388, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37787503

RESUMEN

Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.


Asunto(s)
Melaninas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Temblor/complicaciones , Radioisótopos de Carbono/metabolismo , Tomografía de Emisión de Positrones , Norepinefrina/metabolismo , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética
8.
Proc Natl Acad Sci U S A ; 119(20): e2123511119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537053

RESUMEN

It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.


Asunto(s)
Movimiento Celular , Leucocitos , Receptores Adrenérgicos alfa 1 , Receptores CXCR4 , Membrana Celular/metabolismo , Humanos , Leucocitos/metabolismo , Neoplasias , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal
9.
J Physiol ; 602(16): 4053-4071, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39058701

RESUMEN

The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.


Asunto(s)
Potenciales de Acción , Agonistas de Receptores Adrenérgicos alfa 2 , Dexmedetomidina , Sistema Nervioso Simpático , Humanos , Dexmedetomidina/farmacología , Femenino , Adulto , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Sistema Nervioso Simpático/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adulto Joven , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/efectos de los fármacos , Receptores Adrenérgicos alfa 2/fisiología , Receptores Adrenérgicos alfa 2/metabolismo
10.
J Biol Chem ; 299(6): 104706, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061000

RESUMEN

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Potenciación a Largo Plazo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacología , Depresión Sináptica a Largo Plazo/fisiología , Hipocampo/metabolismo , Sinapsis/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Pflugers Arch ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136758

RESUMEN

Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.

12.
Cell Physiol Biochem ; 58(3): 212-225, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852193

RESUMEN

BACKGROUND/AIMS: Adrenaline quickly inhibits the release of histamine from mast cells. Besides ß2-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties. METHODS: Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists. RESULTS: Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a ß2-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high dose prazosin, a selective α1-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells. CONCLUSION: This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell-stabilizer. The pharmacological blockade of α1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by ß2-adrenergic receptors.


Asunto(s)
Degranulación de la Célula , Epinefrina , Exocitosis , Mastocitos , Prazosina , Animales , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Mastocitos/citología , Epinefrina/farmacología , Ratas , Prazosina/farmacología , Degranulación de la Célula/efectos de los fármacos , Masculino , Exocitosis/efectos de los fármacos , Técnicas de Placa-Clamp , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Ratas Wistar
13.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849140

RESUMEN

Beta-adrenergic receptors (ß-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, ß-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic ß-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective ß-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that ß-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that ß-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of ß-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of ß-AR inhibitors. Significance Statement We have shown that chronic ß-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the ß-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of ß-AR in physiology and pathophysiology and the pharmacological effects of ß-AR inhibitors.

14.
Eur J Clin Invest ; : e14318, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319943

RESUMEN

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are comorbid disorders with overlapping symptoms. Research highlights autonomic dysfunction compared to healthy individuals, particularly involving the sympathetic branch. While past reviews focused on neurophysiological assessments, this systematic review summarises biological adrenergic markers, offering deeper insights into the observed sympathetic dysfunction in ME/CFS and FM aiming to identify targetable pathophysiological mechanisms. METHODS: A systematic search was performed on PubMed, Web of Science, Embase and Scopus. Studies investigating peripheral biological markers of adrenergic function in patients with ME/CFS or FM compared to healthy controls at baseline were included. Meta-analyses were performed using R statistical software. RESULTS: This meta-analysis of 37 studies, encompassing 543 ME/CFS patients and 651 FM patients, compared with 747 and 447 healthy controls, respectively, revealed elevated adrenaline (SMD = .49 [.31-.67]; Z = 5.29, p < .01) and ß1 adrenergic receptor expression (SMD = .79 [.06-1.52]; Z = 2.13; p = .03) in blood of ME/CFS patients at rest. Additionally, patients with ME/CFS had a greater increase in the expression of α2A adrenergic receptor (AR, SMD = .57 [.18-.97]; Z = 2.85, p < .01), ß2 AR (SMD = .41 [.02-.81]; Z = 2.04; p = .04) and COMT (SMD = .42 [.03-.81]; Z = 2.11; p = .03) after exercise and an increased response of noradrenaline to an orthostatic test (SMD = .11 [-.47 to -.70]; Z = 2.10; p = .04), both found in blood. FM patients showed no significant differences at baseline but exhibited a diminished adrenaline response to exercise (SMD = -.79 [-1.27 to -.30]; Z = -3.14; p < .01). CONCLUSION: This systematic review and meta-analysis revealed adrenergic dysfunction mainly in patients with ME/CFS. Higher baseline adrenaline levels and atypical responses to exercise in ME/CFS indicate that sympathetic dysfunction, underscored by adrenergic abnormalities, is more involved in the pathophysiology of ME/CFS rather than FM.

15.
Clin Exp Pharmacol Physiol ; 51(10): e13915, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39227010

RESUMEN

S-Limonene (s-Lim) is a monocyclic monoterpene found in a variety of plants and has been shown to present antioxidant and cardioprotective activity in experimental models of myocardial infarction. The aim of this study was to evaluate the potential mechanism by which s-Lim exerts its antiarrhythmic effect, focusing on the blockade of ß-adrenoceptor (ß-AR) and its effects on various in vivo and in vitro parameters, including electrocardiogram (ECG) measurements, left ventricular developed pressure (LVDP), the ß-adrenergic pathway, sarcomeric shortening and L-type calcium current (ICa,L). In isolated hearts, 10 µM of s-Lim did not alter the ECG profile or LVPD. s-Lim increased the heart rate corrected QT interval (QTc) (10.8%) at 50 µM and reduced heart rate at the concentrations of 30 (12.4%) and 50 µM (16.6%). s-Lim (10 µM) also inhibited the adrenergic response evoked by isoproterenol (ISO) (1 µM) reducing the increased of heart rate, LVDP and ECG changes. In ventricular cardiomyocyte, s-Lim antagonized the effect of dobutamine by preventing the increase of sarcomeric shortening, demonstrating a similar effect to atenolol (blocker ß1-AR). In vivo, s-Lim antagonized the effect of ISO (agonists ß1-AR), presenting a similar effect to propranolol (a non-selective blocker ß-AR). In ventricular cardiomyocyte, s-Lim did not alter the voltage dependence for ICa,L activation or the ICa,L density. In addition, s-Lim did not affect changes in the ECG effect mediated by 5 µM forskolin (an activator of adenylate cyclase). In an in vivo caffeine/ISO-induced arrhythmia model, s-Lim (1 mg/kg) presented antiarrhythmic action verified by a reduced arrhythmia score, heart rate, and occurrence of ventricular premature beats and inappropriate sinus tachycardia. These findings indicate that the antiarrhythmic activity of s-Lim is related to blockade of ß-AR in the heart.


Asunto(s)
Antiarrítmicos , Limoneno , Ratas Wistar , Receptores Adrenérgicos beta , Transducción de Señal , Animales , Ratas , Antiarrítmicos/farmacología , Masculino , Receptores Adrenérgicos beta/metabolismo , Limoneno/farmacología , Transducción de Señal/efectos de los fármacos , Terpenos/farmacología , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ciclohexenos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
16.
Arch Toxicol ; 98(7): 2143-2152, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806716

RESUMEN

Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Riñón , Patulina , Transducción de Señal , Animales , Masculino , Ratones , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones Endogámicos C57BL , Patulina/toxicidad , Transducción de Señal/efectos de los fármacos
17.
Handb Exp Pharmacol ; 285: 147-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38227198

RESUMEN

The concept of G protein-coupled receptors initially arose from studies of the ß-adrenoceptor, adenylyl cyclase, and cAMP signalling pathway. Since then both canonical G protein-coupled receptor signalling pathways and emerging paradigms in receptor signalling have been defined by experiments focused on adrenoceptors. Here, we discuss the evidence for G protein coupling specificity of the nine adrenoceptor subtypes. We summarise the ability of each of the adrenoceptors to activate proximal signalling mediators including cAMP, calcium, mitogen-activated protein kinases, and protein kinase C pathways. Finally, we highlight the importance of precise spatial and temporal control of adrenoceptor signalling that is controlled by the localisation of receptors at intracellular membranes and in larger protein complexes.


Asunto(s)
Receptores Adrenérgicos , Transducción de Señal , Humanos , Animales , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/fisiología , AMP Cíclico/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088840

RESUMEN

A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two ß-adrenergic receptor (ß-AR) subtypes, ß1 and ß2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for ß1-AR but not for ß2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent ß-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the ß2-AR is confined to and diffuses within the T-tubular network, as opposed to the ß1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the ß2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the ß2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.


Asunto(s)
Membrana Celular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Imagen Molecular , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animales , Línea Celular , Membrana Celular/genética , Humanos , Ratones , Ratones Transgénicos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
19.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731821

RESUMEN

In contrast to cats and dogs, here we report that the α2-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.75, 1, 1.5, 2, and 3 mg/kg, i.p.) caused vomiting in shrews in a bell-shaped and dose-dependent manner, with a maximum frequency (0.85 ± 0.22) at 1 mg/kg, which was accompanied by a key central contribution as indicated by increased expression of c-fos, serotonin and substance P release in the shrew brainstem emetic nuclei. Our comparative study in shrews demonstrates that clonidine (0, 0.1, 1, 5, and 10 mg/kg, i.p.) and dexmedetomidine (0, 0.01, 0.05, and 0.1 mg/kg, i.p.) not only suppress yohimbine (1 mg/kg, i.p.)-evoked vomiting in a dose-dependent manner, but also display broad-spectrum antiemetic effects against diverse well-known emetogens, including 2-Methyl-5-HT, GR73632, McN-A-343, quinpirole, FPL64176, SR141716A, thapsigargin, rolipram, and ZD7288. The antiemetic inhibitory ID50 values of dexmedetomidine against the evoked emetogens are much lower than those of clonidine. At its antiemetic doses, clonidine decreased shrews' locomotor activity parameters (distance moved and rearing), whereas dexmedetomidine did not do so. The results suggest that dexmedetomidine represents a better candidate for antiemetic potential with advantages over clonidine.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2 , Antieméticos , Clonidina , Dexmedetomidina , Vómitos , Yohimbina , Animales , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antieméticos/farmacología , Antieméticos/uso terapéutico , Clonidina/farmacología , Clonidina/análogos & derivados , Clonidina/uso terapéutico , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Modelos Animales de Enfermedad , Eméticos/farmacología , Musarañas , Vómitos/tratamiento farmacológico , Vómitos/inducido químicamente , Yohimbina/farmacología
20.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125627

RESUMEN

The autonomic nervous system plays a key role in maintaining body hemostasis through both the sympathetic and parasympathetic nervous systems. Sympathetic overstimulation as a reflex to multiple pathologies, such as septic shock, brain injury, cardiogenic shock, and cardiac arrest, could be harmful and lead to autonomic and immunologic dysfunction. The continuous stimulation of the beta receptors on immune cells has an inhibitory effect on these cells and may lead to immunologic dysfunction through enhancing the production of anti-inflammatory cytokines, such as interleukin-10 (IL-10), and inhibiting the production of pro-inflammatory factors, such as interleukin-1B IL-1B and tissue necrotizing factor-alpha (TNF-alpha). Sympathetic overstimulation-induced autonomic dysfunction may also happen due to adrenergic receptor insensitivity or downregulation. Administering anti-adrenergic medication, such as beta-blockers, is a promising treatment to compensate against the undesired effects of adrenergic surge. Despite many misconceptions about beta-blockers, beta-blockers have shown a promising effect in decreasing mortality in patients with critical illness. In this review, we summarize the recently published articles that have discussed using beta-blockers as a promising treatment to decrease mortality in critically ill patients, such as patients with septic shock, traumatic brain injury, cardiogenic shock, acute decompensated heart failure, and electrical storm. We also discuss the potential pathophysiology of beta-blockers in various types of critical illness. More clinical trials are encouraged to evaluate the safety and effectiveness of beta-blockers in improving mortality among critically ill patients.


Asunto(s)
Antagonistas Adrenérgicos beta , Sistema Nervioso Autónomo , Enfermedad Crítica , Humanos , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Sistema Nervioso Autónomo/efectos de los fármacos , Animales , Choque Séptico/tratamiento farmacológico , Choque Séptico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA