Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 144: 103174, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377868

RESUMEN

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Ratones , Animales , Liposomas/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Autoantígenos/metabolismo , Adyuvantes Inmunológicos , Inmunización , Vacunación , Fenotipo , Ratones Endogámicos C57BL , Células TH1
2.
Adv Exp Med Biol ; 1459: 321-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017850

RESUMEN

The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.


Asunto(s)
Leucemia Promielocítica Aguda , Proteínas de Fusión Oncogénica , Tretinoina , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Tretinoina/uso terapéutico , Tretinoina/farmacología , Trióxido de Arsénico/uso terapéutico , Trióxido de Arsénico/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Arsenicales/uso terapéutico , Arsenicales/farmacología , Óxidos/uso terapéutico , Óxidos/farmacología , Animales
3.
Genes Chromosomes Cancer ; 62(10): 617-623, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37283355

RESUMEN

The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Masculino , Humanos , Adolescente , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Translocación Genética , Tretinoina/uso terapéutico , Leucemia Mieloide Aguda/genética , Receptor alfa de Ácido Retinoico/genética , Genómica , Proteínas de Fusión Oncogénica/genética , Fibronectinas/genética
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(3): 444-451, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35642153

RESUMEN

Objective: To investigate the regulatory effect of all-trans retinoic acid (ATRA) on the expression interleukin-1ß (IL-1ß) in macrophages and the mechanisms involved. Methods: Macrophages were treated with 1 µmol/L ATRA for 24 h before RNA-Sequence. Differentially expressed genes (DEGs) were screened out and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene ontology (GO) functional analysis, and protein-protein interaction networks (PPI) analysis. After treatment with different doses of ATRA for 24 h, the expression of IL-1ß was examined with qRT-PCR and Western blot. The activation of NF-κB signaling and caspase-1 was observed by Western blot and immunofluorescence staining. Results: Compared with the blank control group, a total of 71 DEGs of macrophages were upregulated in the ATRA treatment group. KEGG analysis showed that the up-regulated DEGs were involved in IL-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, etc. GO analysis indicated that the up-regulated DEGs were involved in the biological processes of the production of IL-1ß, response to lipopolysaccharide, etc. PPI analysis revealed that inflammatory cytokines, adhesion molecules, and chemokines were the key genes that ATRA acted on. In vitro experiments showed that ATRA promoted IL-1ß expression in macrophages in a concentration-dependent manner. The expression of p-NF-κB, NF-κB, and caspase-1 were significantly increased by ATRA compared with those of the control group ( P<0.05), and p-NF-κB translocated to the cell nucleus in the ATRA group. Conclusion: ATRA may promote the expression of IL-1ß by activating NF-κB signaling and caspase-1 in macrophages, this study may provide evidence for the immune regulatory function of ATRA on macrophages.


Asunto(s)
Macrófagos , FN-kappa B , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Tretinoina/farmacología
5.
J Biol Chem ; 295(27): 8887-8900, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434928

RESUMEN

CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3, also known as MTG16 or ETO2) is a myeloid translocation gene family protein that functions as a master transcriptional corepressor in hematopoiesis. Recently, it has been shown that CBFA2T3 maintains leukemia stem cell gene expression and promotes relapse in acute myeloid leukemia (AML). However, a role for CBFA2T3 in myeloid differentiation of AML has not been reported. Here, we show that CBFA2T3 represses retinoic acid receptor (RAR) target gene expression and inhibits all-trans-retinoic acid (ATRA)-induced myeloid differentiation of AML cells. ChIP-Seq revealed that CBFA2T3 targets the RARα/RXRα cistrome in U937 AML cells, predominantly at myeloid-specific enhancers associated with terminal differentiation. CRISPR/Cas9-mediated abrogation of CBFA2T3 resulted in spontaneous and ATRA-induced activation of myeloid-specific genes in a manner correlated with myeloid differentiation. Importantly, these effects were reversed by CBFA2T3 re-expression. Mechanistic studies showed that CBFA2T3 inhibits RAR target gene transcription by acting at an early step to regulate histone acetyltransferase recruitment, histone acetylation, and chromatin accessibility at RARα target sites, independently of the downstream, RAR-mediated steps of transcription. Finally, we validated the inhibitory effect of CBFA2T3 on RAR in multiple AML subtypes and patient samples. To our knowledge, this is the first study to show that CBFA2T3 down-regulation is both necessary and sufficient for enhancing ATRA-induced myeloid gene expression and differentiation of AML cells. Our findings suggest that CBFA2T3 can serve as a potential target for enhancing AML responsiveness to ATRA differentiation therapies.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas Co-Represoras/genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismo , Células Mieloides/fisiología , Receptores de Ácido Retinoico/genética , Proteínas Represoras/metabolismo , Receptor alfa de Ácido Retinoico/genética , Tretinoina/metabolismo , Tretinoina/farmacología , Proteínas Supresoras de Tumor/genética
6.
Biochem J ; 477(4): 817-831, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32016357

RESUMEN

Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Intestino Delgado/metabolismo , Riñón/metabolismo , Regiones Promotoras Genéticas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Animales , Antineoplásicos/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hipofosfatemia Familiar/metabolismo , Hipofosfatemia Familiar/patología , Hipofosfatemia Familiar/prevención & control , Intestino Delgado/efectos de los fármacos , Riñón/efectos de los fármacos , Masculino , Ratones , Células 3T3 NIH , Ratas , Ratas Wistar , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo
7.
Ren Fail ; 43(1): 658-663, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33820492

RESUMEN

All-trans retinoic acid (ATRA) is one of essentially active metabolite of vitamin A, and plays an important role in diverse physiological processes, such as cellular growth and function. Renal interstitial fibrosis (RIF) is a common pathological characteristic of chronic renal disease causing end-stage renal disease currently lacking effective treatment. Low level of Angiopoietins-1 (Angpt-1) is associated with extracellular matrix accumulation and fibrosis diseases. This study was performed to assess the association of ATRA with Angpt-1 in RIF disease. Rats were divided into three groups: group of sham (SHO group), group of unilateral ureteral obstruction group (UUO group), UUO mice administrated daily at the dose of ATRA (ATRA group). Masson-staining was used to detect the histologic lesion. Immunohistochemistry and Western-blot were applied to determine the targeted proteins. RIF score was significantly increased in UUO rats when compared with that of SHO group, and the fibrosis score was notably reduced in ATRA group. Transforming growth factor-ß1 (TGF-ß1), collagen IV (Col-IV) and fibronectin (FN) expressions in UUO group were significantly up-regulated, whereas Angpt-1 expression was significantly down-regulated compared with the SHO group. ATRA treatment reduced TGF-ß1, Col-IV and FN expressions and improved Angpt-1 expression compared with the UUO group. The protein expression of Angpt-1 in kidney tissue of UUO group was negatively correlated with RIF index and protein expressions of Col-IV, FN and TGF-ß1. In conclusion, low expression of Angpt-1 was associated with the RIF disease and ATRA treatment can increase the Angpt-1 and alleviate the RIF lesion in UUO rats.


Asunto(s)
Angiopoyetina 1/metabolismo , Matriz Extracelular/metabolismo , Nefritis Intersticial/tratamiento farmacológico , Nefritis Intersticial/patología , Tretinoina/farmacología , Angiopoyetina 1/genética , Animales , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo , Matriz Extracelular/efectos de los fármacos , Fibronectinas/metabolismo , Fibrosis/patología , Masculino , Nefritis Intersticial/genética , Nefritis Intersticial/metabolismo , Ratas , Factor de Crecimiento Transformador beta1/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34830183

RESUMEN

Olfactory receptors (ORs), which belong to the G-protein-coupled receptor family, have been widely studied as ectopically expressed receptors in various human tissues, including the skin. However, the physiological functions of only a few OR types have been elucidated in skin cells. All-trans retinoic acid (ATRA) is a well-known medication for various skin diseases. However, many studies have shown that ATRA can have adverse effects, resulting from the suppression of cell proliferation. Here, we investigated the involvement of OR7A17 in the ATRA-induced suppression of human keratinocyte (HaCaT) proliferation. We demonstrated that OR7A17 is expressed in HaCaT keratinocytes, and its expression was downregulated by ATRA. The ATRA-induced downregulation of OR7A17 was attenuated via RAR α or RAR γ antagonist treatment, indicating that the effects of ATRA on OR7A17 expression were mediated through nuclear retinoic acid receptor signaling. Moreover, we found that the overexpression of OR7A17 induced the proliferation of HaCaT cells while counteracting the antiproliferative effect of ATRA. Mechanistically, OR7A17 overexpression reversed the ATRA-induced attenuation of Ca2+ entry. Our findings indicated that ATRA suppresses cell proliferation through the downregulation of OR7A17 via RAR α- and γ-mediated retinoid signaling. Taken together, OR7A17 is a potential therapeutic target for ameliorating the anti-proliferative effects of ATRA.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Expresión Génica , Queratinocitos/efectos de los fármacos , Receptores Odorantes/genética , Tretinoina/farmacología , Antineoplásicos/farmacología , Western Blotting , Calcio/metabolismo , Línea Celular , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Receptores Odorantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
J Cell Mol Med ; 24(12): 6952-6965, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32391634

RESUMEN

Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB-targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK-glycolysis signalling axis. Further studies should focus on the underlying leukaemia-promoting mechanisms and investigate LDHB as a therapeutic target.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/patología , Receptor alfa de Ácido Retinoico/metabolismo , Retinoides/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Transducción de Señal , Quinasas raf/metabolismo
10.
Biochem Biophys Res Commun ; 514(4): 1231-1237, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31109648

RESUMEN

All-trans-retinoic acid (ATRA) has been well described as a positive regulator for early stage of adipocyte differentiation and lipid metabolism and also linked to an in vivo fat-lowering effect in mice. However, not all studies support this association. Our objective was to characterize the action of ATRA in mature adipocytes of mice by ablating RAR signaling through overexpression of a well-characterized dominant negative RARα mutant (RARdn) form specifically in adipocytes. Altered RAR signaling in adipocytes resulted in a significant decrease in ATRA levels in visceral and brown adipose tissues as well as liver tissue. This was linked to significant impairments in glucose clearance and elevated hepatic lipid accumulation for chow diet fed mice, indicating the development of metabolic disease, including hepatic steatosis. In addition, we found that adipose RARdn expression in mice fed a chow diet decreased thermogenesis. We conclude that altered RAR signaling and ATRA levels in adipocytes impacts glucose and lipid metabolism in mice.


Asunto(s)
Adipocitos/metabolismo , Hígado Graso/metabolismo , Intolerancia a la Glucosa/metabolismo , Receptor alfa de Ácido Retinoico/genética , Animales , Ratones , Ratones Transgénicos , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal
11.
Cell Mol Biol (Noisy-le-grand) ; 65(7): 1-4, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31880511

RESUMEN

All-trans retinoic acid (ATRA) is a critical component in cell processes such as cell growth, differentiation and apoptosis, and it is also crucial in the regulation of extracellular matrix (ECM) deposition. Prohibitin (PHB) can regulate cell proliferation, apoptosis and differentiation. The current study investigated whether ATRA regulated PHB is induced by hypoxia/reoxygenation injury in renal tubular epithelial cells (RTEC), using gene interference treatments (knockdown or overexpression of RARα). Our results indicate that ATRA can augment the expression of RARα and PHB proteins and reduce the expression of TGF-ß1, FN and Col-IV proteins. PHB expression was reduced in an ATRA treated RARα- group, and TGF-ß1, FN and Col-IV were up-regulated compared to the ATRA treated RARα+ group. We postulate that ATRA can induce the PHB expression by RARα in hypoxia/reperfusion related RTEC injury.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas Represoras/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Animales , Antioxidantes/metabolismo , Western Blotting , Matriz Extracelular/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología , Prohibitinas , ARN Mensajero/metabolismo , Ratas , Factor de Crecimiento Transformador beta1/metabolismo
12.
Contact Dermatitis ; 81(3): 184-193, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31006867

RESUMEN

BACKGROUND: Retinoic acid (RA)-induced dermatitis is the most frequent side-effect limiting its widespread use. However, the exact mechanisms triggering dermatitis are not fully understood, including the role of skin mast cells. The newly discovered Mas-related G-protein-coupled receptor-X2 (MRGPRX2) in mast cells mediates pseudoallergic drug reactions in several types of dermatitis. A possible contribution of MRGPRX2 to contact dermatitis induced by RA has hitherto not been examined. OBJECTIVES: To investigate whether all-trans-RA (ATRA) activates mast cells via MRGPRX2/MrgprB2 (the mouse orthologue), contributing to the pathogenesis of retinoid-induced dermatitis. METHODS: Wild-type (WT) and MrgprB2-/- mice were treated with topical ATRA to observe local inflammation and mast cell degranulation in vivo by the use of haematoxylin and eosin and immunofluorescence staining. Release of histamine and release of ß-hexosaminidase were measured and calcium influx was detected in Laboratory of Allergic Disease 2 (LAD2) cells with specific knockdown targeting MRGPRX2 by small interfering RNA (siRNA) and in primary cells from MrgprB2-/- mice. RESULTS: As compared with WT mice, MrgprB2-/- mice showed resistance to ATRA-triggered contact dermatitis and local inflammatory reactions in the paws. ATRA activated mast cells via the MrgprB2 pathway in murine cells, and via the MRGPRX2 pathway in human mast cells. CONCLUSIONS: ATRA-induced dermatitis could be achieved by activating mast cells via MRGPRX2/MrgprB2, which may provide a potential therapy target to reduce the side-effect.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Dermatitis por Contacto/etiología , Mastocitos/fisiología , Receptores Acoplados a Proteínas G/genética , Tretinoina/farmacología , Animales , Calcio/metabolismo , Línea Celular , Dermatitis , Dermatitis por Contacto/genética , Técnicas de Silenciamiento del Gen , Histamina/metabolismo , Humanos , Masculino , Mastocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Tretinoina/toxicidad , beta-N-Acetilhexosaminidasas/metabolismo
13.
J Cell Physiol ; 233(1): 607-616, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28322443

RESUMEN

Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome-wide screening of RA-responsive genes by in silico analysis of RA-response elements, and identified 26 RA-responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all-trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP-mediated HSC activation was suppressed by antioxidant N-acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.


Asunto(s)
Antioxidantes/farmacología , Proteínas Portadoras/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiorredoxinas/metabolismo , Tretinoina/farmacología , Deficiencia de Vitamina A/prevención & control , Animales , Proteínas Portadoras/genética , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ratones Endogámicos C57BL , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/genética , Transfección , Deficiencia de Vitamina A/genética , Deficiencia de Vitamina A/metabolismo , Deficiencia de Vitamina A/patología
14.
Pharm Res ; 34(12): 2710-2719, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29181687

RESUMEN

PURPOSE: In this study, miR-542-3p appended SRF/ATRA-loaded solid lipid nanoparticle was successfully prepared and demonstrated for its therapeutic efficacy against gastric cancers. METHODS: The particles were nanosized and typically spherical in shape. In vitro release study showed that release of ATRA was significantly slower compared to that of SRF from the NPs. RESULTS: MTT assay showed that miR-542-3p have a strong inhibitory effect on the proliferation of MGC-803 cancer cells in a typical dose dependent manner. Nanocarrier encapsulation of SRF + ATRA induced a significantly higher cytotoxic effect compared to either individual drug or cocktail combinations indicating that the cellular uptake of different formulations was rate limiting factor in the therapeutic efficacy. Importantly, miR-542-3p-based miSRNP exhibited an extremely significant toxic effect compared to any other treated group. Importantly, miSRNP induced a significantly higher early (~55%) and late (~15%) apoptotic effect in gastric cancer cells. In vivo anticancer analysis results clearly suggest that nanoparticle encapsulation of combination of SRF and miRNA (with miRNA) will have greater antitumor efficacy in tumor mice. CONCLUSION: Overall, unique combination of miRNA coupled with SRF + ATRA in a lipid nanocarrier could be a promising therapeutic approach in gastric cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , MicroARNs/uso terapéutico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Neoplasias Gástricas/terapia , Tretinoina/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones Desnudos , MicroARNs/administración & dosificación , Nanopartículas/química , Niacinamida/administración & dosificación , Niacinamida/uso terapéutico , Compuestos de Fenilurea/administración & dosificación , Sorafenib , Neoplasias Gástricas/patología , Tretinoina/administración & dosificación
15.
Bioorg Med Chem Lett ; 27(6): 1425-1427, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28216044

RESUMEN

Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [18F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [18F]KBM-1 was carried out through KHF2 assisted substitution of [18F]- from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [18F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5min to 60min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30min to 60min post injection. Tumor uptake in subset of 30min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [18F]KBM-1 as a RAR-α imaging agent.


Asunto(s)
Benzopiranos/farmacología , Compuestos de Boro/farmacología , Radioisótopos de Flúor/metabolismo , Neuroblastoma/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Animales , Benzopiranos/química , Benzopiranos/farmacocinética , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Xenoinjertos , Humanos , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptor alfa de Ácido Retinoico/agonistas , Distribución Tisular
16.
BMC Clin Pathol ; 16: 16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27708545

RESUMEN

BACKGROUND: The recent study described a better outcome in acute promyelocytic leukemia patients treated with all-trans retinoic acid and arsenic oxide compared to those treated with all-trans retinoic acid combined with conventional chemotherapy. The pivotal study indicated that favorable-risk acute promyelocytic leukemia patients can be cured without any cytotoxic chemotherapy. Even high-risk patients are treatable with cytotoxic agents. Acute promyelocytic leukemia does not develop only by the dedifferentiation caused by PML-RARA. A determined oncogene other than PML-RARA which promotes cell proliferation would be required. CASE PRESENTATION: We recently treated a 30-year-old Japanese female who achieved molecular remission with only the administration of all-trans retinoic acid. The patient's leukemic clones concomitantly had a del(5q) aberrant chromosome with t(15;17) (q22;q12). The patient's bone marrow cells indicated clonal evolution of the tumor cells expressing CD13dim, CD33+, CD117+, and lacking HLA-DR, CD34 and CD11b. A fluorescence in situ hybridization analysis detected PML-RARA fusion genes in the patient's bone marrow specimens, leading to the diagnosis of acute promyelocytic leukemia. CONCLUSION: A del(5q) is one of the characteristic chromosomal abnormalities observed in myelodysplastic syndrome. On the other hand, up to 40 % of acute promyelocytic leukemia cases are known to harbor the addition of a clonal cytogenetic abnormality. However, such a case acute promyelocytic leukemia with del(5q) would be rare, rather than myelodysplastic syndrome, consequently obtaining t(15;17). Which cytogenetic abnormalities, acute promyelocytic leukemia or myelodysplastic syndrome, came first is informative to make a clinical decision for the initial therapy. In this case, we speculated the PML-RARA translocation is an original pathogenesis and thereafter additional cytogenetic abnormalities (del(5q) and -6) common in myelodysplastic syndrome. All-trans retinoic acid lead the patient into molecular remission. We propose that an assessment of additional cytogenetic abnormality in acute promyelocytic leukemia would contribute to the clinical decisions regarding whether to treat disease with all-trans retinoic acid and cytotoxic agents. It would be of interest to know the extent of cytogenetic abnormality in the patients regarding to mixed leukemia. One or more additional cytogenetic abnormalities other than PML-RARA could account for the biological malignant grade and prognostic index.

17.
Clin Exp Ophthalmol ; 44(6): 502-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26836442

RESUMEN

BACKGROUND: We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. METHODS: Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. RESULTS: All-trans retinoic acid inhibited interleukin-1ß-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1ß in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. CONCLUSIONS: All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1ß, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration.


Asunto(s)
Colágeno/metabolismo , Queratocitos de la Córnea/efectos de los fármacos , Queratolíticos/farmacología , Tretinoina/farmacología , Animales , Células Cultivadas , Queratocitos de la Córnea/metabolismo , Úlcera de la Córnea/inducido químicamente , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/prevención & control , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hidroxiprolina/metabolismo , Proteínas I-kappa B/metabolismo , Immunoblotting , Técnicas para Inmunoenzimas , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Masculino , Metaloproteinasas de la Matriz/metabolismo , FN-kappa B/metabolismo , Fosforilación , Conejos
18.
Cancer ; 121(22): 3990-7, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26264598

RESUMEN

BACKGROUND: Findings from clinical trials and population-based studies have differed with regard to whether mortality within 30 days of diagnosis (early death) of acute promyelocytic leukemia (APL) has decreased in the era of all-trans retinoic acid and anthracycline-based chemotherapy. METHODS: Using data from the California Cancer Registry, the authors investigated 7-day and 30-day mortality and survival in 772 patients who were aged birth to 39 years when they were diagnosed with APL during 1988 to 2011. Logistic regression and Cox proportional models were used to examine the association of early death and survival, respectively, with sociodemographic and clinical factors. RESULTS: The overall 30-day mortality decreased significantly over time, from 26% (1988-1995) to 14% (2004-2011) (P =.004). On multivariable analysis, the odds of 30-day mortality were 3 times as high during 1988 through 1995 than 2004 through 2011 (P =.001). However, 7-day mortality did not improve over time (P =.229). When patients who died within 7 days of diagnosis were excluded, the 30-day mortality during 1996 to 2011 was 3% to 8%, which is similar to levels reported in clinical trials. Higher early death and lower survival were associated with a lack of health insurance (1996-2011) (early death odds ratio, 2.67; P =.031) and Hispanic race/ethnicity (early death odds ratio, 2.13; P =.014). Early death was not found to be associated with age, sex, socioeconomic status, or hospital type. Black patients also experienced worse survival. CONCLUSIONS: The findings of the current study revealed a decreased 30-day mortality during the all-trans retinoic acid era, but 7-day mortality remained high. Efforts to achieve equal outcomes in young patients with APL should focus on improving access to effective treatment, mainly among uninsured patients and those of Hispanic and black race/ethnicity.


Asunto(s)
Disparidades en Atención de Salud , Leucemia Promielocítica Aguda/mortalidad , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Modelos Logísticos , Masculino , Modelos de Riesgos Proporcionales , Adulto Joven
19.
Bioorg Med Chem ; 23(20): 6763-73, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26365710

RESUMEN

All-trans-retinoic acid (ATRA) as a physiological metabolite of vitamin A is widely applied in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. CYP26A1 enzyme, induced by ATRA in liver and target tissues, metabolizes ATRA into 4-hydroxyl-RA. Inhibition of CYP26A1 metabolic enzyme represents a promising strategy for discovery of new specific anticancer agents. Herein, we describe the design, synthesis and biological evaluation of a series of new amide imidazole derivatives as retinoic acid metabolism blocking agents (RAMBAs) toward CYP26A1 enzyme. First, based on the recent theoretical models (Sun et al., J. Mol. Graph. Model., 2015, 56, 10-19) a series of RAMBAs with novel scaffolds were designed using fragment-based drug discovery approach. Subsequently, the new RAMBAs were synthesized and evaluated for their biological activities. All the compounds demonstrated appropriate enzyme activities and cell activities. The promising inhibitors 20 and 23 with IC50 value of 0.22 µM and 0.46 µM toward CYP26A1, respectively, were further evaluated for CYP selectivity and the metabolic profile of ATRA. Both compounds 20 and 23 showed higher selectivity for CYP26A1 over other CYPs (CYP2D6, CYP3A4) when compared to liarozole. They also showed better inhibitory activities for the metabolism of ATRA when also compared to liarozole. These studies further validated the pharmacophore and structure-activity relationship models obtained about CYP26A1 inhibitors and highlighted the promising activities of the new series of CYP26A1 inhibitors designed from such models. They also paved the way for future development of those candidates as potential drugs.


Asunto(s)
Amidas/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Diseño de Fármacos , Imidazoles/farmacología , Amidas/síntesis química , Amidas/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Relación Dosis-Respuesta a Droga , Células HL-60 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Modelos Moleculares , Estructura Molecular , Ácido Retinoico 4-Hidroxilasa , Relación Estructura-Actividad
20.
Bioorg Med Chem ; 23(6): 1356-65, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25684424

RESUMEN

All-trans-retinoic acid (ATRA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases and cancers. However, it is easily metabolized. In this study, the leading compound S8 was found based on virtual screening. To improve the activity of the leading compound S8, a series of novel S8 derivatives were designed, synthesized and evaluated for their in vitro biological activities. All of the prepared compounds showed that substituting the 5-chloro-3-methyl-1-phenyl-1H-pyrazole group for the 2-tertbutyl-5-methylfuran scaffold led to a clear increase in the biological activity. The most promising compound 32, with a CYP26A1 IC50 value of 1.36µM (compared to liarozole (IC50=2.45µM) and S8 (IC50=3.21µM)) displayed strong inhibitory and differentiation activity against HL60 cells. In addition, the study focused on the effect of ß-phenylalanine, which forms the coordination bond with the heme of CYP26A1. These studies suggest that the compound 32 can be used as an appropriate candidate for future development.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fenilpropionatos/química , Fenilpropionatos/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HL-60 , Humanos , Modelos Moleculares , Estructura Molecular , Fenilpropionatos/síntesis química , Ácido Retinoico 4-Hidroxilasa , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA