Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Environ Manage ; 366: 121855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025005

RESUMEN

Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Membranas Artificiales
2.
Environ Res ; 214(Pt 2): 114010, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35921906

RESUMEN

Low efficiency of anaerobic digestion and membrane fouling, treating landfill leachate, are big barriers in the application of anaerobic membrane bioreactor (AnMBR). Anaerobic digestion enhancement and membrane fouling mitigation of AnMBR with graphite addition, treating landfill leachate, were investigated in this study. The effect of graphite on organics removal, biogas production, methane content in biogas, membrane fouling, microbial responses and foulant compositions were analyzed. With the graphite addition, chemical oxygen demand (COD) removal of 78% was achieved for influent COD concentration of 3000 mg/l, which was significantly higher than the stage without graphite addition (65%) for influent COD concentration of 2000 mg/l. Similarly, methane content in biogas with graphite addition was 56%, while without graphite addition it was 46%. These digestion improvements were due to the promotion of organics degradation, facilitated by direct interspecies electron transfer (DIET) mechanism via graphite addition in AnMBR. The graphite addition prolonged membrane cleaning cycle from 13 days to 30 days. Protein content in loosely bound extracellular polymeric substance (LB-EPS) was the main fouling agent, which decreased with the graphite addition. The main mechanism behind membrane fouling mitigation was the protein content reduction in LB-EPS, which was biodegraded by Trichococcus being increased in relative abundance with the graphite addition. Furthermore, abundance of Denitratisoma decreased in anaerobic sludge and its accumulation reduced on membrane surface, subsequently membrane fouling was mitigated. Overall, graphite addition in AnMBR is a potential eco-innovative approach that efficiently removes pollutants from landfill leachate, enhances biogas quality and mitigates membrane fouling.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Anaerobiosis , Biocombustibles , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Membranas Artificiales , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
3.
J Environ Manage ; 287: 112344, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33752047

RESUMEN

AnMBR technology is a promising alternative to achieve future energy-efficiency and environmental-friendly urban wastewater (UWW) treatment. However, the large amount of dissolved methane lost in the effluent represents a potential high environmental impact that hinder the feasibility of this technology for full-scale applications. The use of degassing membranes (DM) to capture the dissolved methane from AnMBR effluents can be considered as an interesting alternative to solve this problem although further research is required to assess the suitability of this emerging technology. The aim of this study was to assess the effect of operating temperature and hydrodynamics on the capture of dissolved methane from AnMBR effluents by DMs. To this aim, a commercial polydimethylsiloxane (PDMS) DM was coupled to an industrial prototype AnMBR (demonstration scale) treating UWW at ambient temperature. Different operating temperatures have been evaluated: 11, 18, 24 and 30 °C. Moreover, the DM was operated at different ratios of liquid flow rate to membrane area (QL:A) ranging from 22 to 190 Lh-1m-2 in order to study the resistance of the system to methane permeation. Methane recovery was maximized when temperature raised and QL:A was reduced, giving methane recovery efficiencies (MRE) of about 85% at a temperature of 30 °C and a QL:A of 25 Lh-1m-2. The study showed that high QL:A ratios hinder methane recovery by the perturbation of the DM fibers, being this effect intensified at lower temperatures probably due the higher liquid viscosities. Also, the performed fouling evaluation showed that not significant membrane fouling may be expected in the DM unit at the short-term when treating AnMBR effluents. A resistance-in-series model was proposed to predict the overall mass transfer of the system according to operating temperature and QL:A, showing that methane capture was controlled by the liquid phase, which represented up to 80-90% of total mass transfer resistance. The energy and environmental evaluation performed in this study revealed that PDMS DMs would enhance energy recovery and environmental feasibility of AnMBR technology for UWW treatment, especially when operating at low temperatures. When MRE was maximized, the combination of AnMBR with DM achieved net energy productions and net greenhouse gas reductions of up to 0.87 kWh and 0.216 kg CO2-eq per m3 of treated water.


Asunto(s)
Metano , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Dimetilpolisiloxanos , Hidrodinámica , Membranas Artificiales , Temperatura , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
4.
J Environ Manage ; 269: 110720, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32425175

RESUMEN

The use of the anaerobic membrane bioreactor (AnMBR) process for domestic wastewater treatment presents an opportunity to mitigate environmental, social, and economic impacts currently incurred from energy-intensive conventional aerobic activated sludge processes. Previous studies have performed detailed evaluations on improving AnMBR process subcomponents to maximize energy recovery and dissolved methane recovery. Few studies have broadly evaluated the role of chemical use, membrane fouling management, and dissolved methane removal technologies. A life cycle assessment was conducted to holistically compare multiple AnMBR-based domestic wastewater treatment trains to conventional activated sludge (CAS) treatment. These treatment trains included different scouring methods to mitigate membrane fouling (gas-sparging and granular activated carbon-fluidizing) with consideration of upstream treatment (primary sedimentation vs. screening only), downstream treatment (dissolved methane removal and nutrient removal) and sludge management (anaerobic digestion and lime stabilization). This study determined two process subcomponents (sulfide and phosphorus removal and sludge management) that drove chemical use and residuals generation, and in turn the environmental and cost impacts. Furthermore, integrating primary sedimentation and a vacuum degassing tank for dissolved methane removal maximized net energy recovery. Sustainability impacts were further mitigated by operating at a higher flux and temperature, as well as by substituting biological sulfide removal for chemical coagulation.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Membranas Artificiales , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
5.
Appl Microbiol Biotechnol ; 100(13): 6081-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27003270

RESUMEN

In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.


Asunto(s)
Bacterias/metabolismo , Gases/química , Aguas Residuales/química , Purificación del Agua/métodos , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos/microbiología , Gases/metabolismo , Membranas Artificiales , Metano/análisis , Metano/metabolismo , Aguas Residuales/microbiología , Purificación del Agua/instrumentación
6.
J Environ Manage ; 179: 83-92, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27179448

RESUMEN

The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.023 per m(3) of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating UWW jointly with OFMSW enhances the overall environmental performance of AnMBR technology.


Asunto(s)
Eliminación de Residuos/métodos , Eliminación de Residuos Líquidos/economía , Eliminación de Residuos Líquidos/métodos , Biocombustibles , Reactores Biológicos , Costos y Análisis de Costo , Incineración , Membranas Artificiales , Metano/metabolismo , Eliminación de Residuos/economía , Aguas del Alcantarillado , Residuos Sólidos , Sulfatos/química , Temperatura , Instalaciones de Eliminación de Residuos , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/análisis , Aguas Residuales/química
7.
J Environ Manage ; 151: 280-5, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25577705

RESUMEN

Anaerobic membrane bioreactors (AnMBRs) have been shown to be successful units for the treatment of low strength wastewaters, however, the issue of membrane fouling is still a major problem in terms of economic viability. Biogas sparging has been shown to reduce fouling substantially, and hence this study monitored the effect of biogas sparging rate on an AnMBR. The critical flux under a sparging rate of 6 l per minute (LPM) was found to be 11.8 l m(-2) h(-1) (LMH), however, membrane hysteresis was found to have an effect on the critical flux, and where the AnMBR had previously been operated with a 2 LPM sparging rate, the critical flux fell to 7.2 LMH. The existence of a "critical sparging rate" was also investigated under the condition that 'there exists a sparging rate beyond which any further decrease in sparging rate will cause a dramatic rise in TMP'. For an AnMBR operating at a flux of 7.2 LMH the critical sparging rate was found to be 4 LPM.


Asunto(s)
Reactores Biológicos , Polietileno/química , Purificación del Agua/instrumentación , Anaerobiosis , Diseño de Equipo , Humanos , Membranas Artificiales , Presión
8.
Environ Technol ; 36(13-16): 1795-806, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25635702

RESUMEN

A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.


Asunto(s)
Bacterias Anaerobias/fisiología , Reactores Biológicos/microbiología , Membranas Artificiales , Aguas del Alcantarillado/microbiología , Ultrafiltración/instrumentación , Purificación del Agua/instrumentación , Anaerobiosis/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Robótica/instrumentación
9.
Water Res ; 229: 119486, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535088

RESUMEN

Wastewater (WW) treatment in anaerobic membrane bioreactors (AnMBR) is considered more sustainable than in aerobic reactors. However, outputs from AnMBR are a mixed methane and carbon dioxide gas stream as well as ammonium- (N) and phosphate- (P) containing waters. Using AnMBR outputs as inputs for photoautotrophic algal cultivation can strip the CO2 while removing N and P from effluent which feed algal biomass generation. Recent advances in algal engineering have generated strains that produce high-value side products concomitant with biomass, although only shown in heavily domesticated, lab-adapted strains. Here, it was investigated whether engineered Chlamydomonas reinhardtii could be grown directly in AnMBR effluent with CO2 concentrations found in AnMBR off-gas. The strain was found to proliferate over bacteria in the non-sterile effluent, consume N and P to levels that meet general discharge or reuse limits, and tolerate cultivation in modelled (extreme) outdoor environmental conditions prevalent along the central Red Sea coast. In addition to ∼2.4 g CDW L-1 biomass production in 96 h, a high-value heterologous sesquiterpene co-product could be obtained from 'milking' up to 837 µg L-1 culture in 96 h. This is the first demonstration of a combined bio-process that employs a heavily engineered algal strain to enhance the product generation potentials from AnMBR effluent treatment. This study shows it is possible to convert waste into value through use of engineered algae while also improving wastewater treatment economics through co-product generation.


Asunto(s)
Microalgas , Anaerobiosis , Dióxido de Carbono , Biomasa , Terpenos , Reactores Biológicos/microbiología , Metano , Eliminación de Residuos Líquidos
10.
Front Bioeng Biotechnol ; 11: 1133613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970610

RESUMEN

Current microbial reduction technologies have been proven to be suitable for decontaminating industrial wastewaters containing high concentrations of selenium (Se) oxyanions, however, their application is strictly limited by the elemental Se (Se0) accumulation in the system effluents. In this work, a continuous-flow anaerobic membrane bioreactor (AnMBR) was employed for the first time to treat synthetic wastewater containing 0.2 mM soluble selenite (SeO3 2-). The SeO3 2- removal efficiency by the AnMBR was approachable to 100% in most of the time, regardless of the fluctuation in influent salinity and sulfate (SO4 2-) stress. Se0 particles were always undetectable in the system effluents, owing to their interception by the surface micropores and adhering cake layer of membranes. High salt stress led to the aggravated membrane fouling and diminished content ratio of protein to polysaccharide in the cake layer-contained microbial products. The results of physicochemical characterization suggested that the sludge-attached Se0 particles presented either sphere- or rod-like morphology, hexagonal crystalline structure and were entrapped by the organic capping layer. According to the microbial community analysis, increasing influent salinity led to the diminished population of non-halotolerant Se-reducer (Acinetobacter) and increased abundance of halotolerant sulfate reducing bacteria (Desulfomicrobium). In the absence of Acinetobacter, the efficient SeO3 2- abatement performance of the system could still be maintained, as a result of the abiotic reaction between SeO3 2- and S2- generated by Desulfomicrobium, which then gave rise to the production of Se0 and S0.

11.
Sci Total Environ ; 803: 150108, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525766

RESUMEN

The anaerobic membrane bioreactor (AnMBR) has considerable potential for treating wastewater, although there is very little data on the effect of antibiotics on AnMBR performance. This study examined the effect of Ciprofloxacin (CIP) - an antibiotic that can occur at high concentrations, and has a substantial impact on ecosystems, on AnMBR performance. The long-term (44 days) presence of 0.5 mg/L CIP in the feed did not have a strong effect on COD removal, volatile fatty acid (VFA) accumulation, or methane yield, but did affect the pH, soluble microbial products (SMPs) and suspended solids. However, at 4.7 mg/L CIP, a significant effect on all the parameters tested was seen. 16S rRNA gene-based community analysis demonstrated that CIP changed the phylogenetic structure and altered the species richness and diversity. The relative abundance of various genera was also changed, and this explained much of the change in AnMBR behavior.


Asunto(s)
Ciprofloxacina , Ecosistema , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Metano , Filogenia , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
12.
Membranes (Basel) ; 12(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35207073

RESUMEN

Flux enhancers (FEs) have been successfully applied for fouling mitigation in membrane bioreactors. However, more research is needed to compare and optimise different dosing strategies to improve the filtration performance, while minimising the use of FEs and preventing overdosing. Therefore, the goal of this research is to develop an optimised control strategy for FE dosing into an AnMBR by developing a comprehensive integrated mathematical model. The integrated model includes filtration, flocculation, and biochemical processes to predict the effect of FE dosing on sludge filterability and membrane fouling rate in an AnMBR. The biochemical model was based on an ADM1, modified to include FEs and colloidal material. We developed an empirical model for the FE-induced flocculation of colloidal material. Various alternate filtration models from the literature and our own empirical models were implemented, calibrated, and validated; the best alternatives were selected based on model accuracy and capacity of the model to predict the effect of varying sludge characteristics on the corresponding output, that is fouling rate or sludge filterability. The results showed that fouling rate and sludge filterability were satisfactorily predicted by the selected filtration models. The best integrated model was successfully applied in the simulation environment to compare three feedback and two feedforward control tools to manipulate FE dosing to an AnMBR. The modelling results revealed that the most appropriate control tool was a feedback sludge filterability controller that dosed FEs continuously, referred to as ∆R20_10. Compared to the other control tools, application of the ∆R20_10 controller resulted in a more stable sludge filterability and steady fouling rate, when the AnMBR was subject to specific disturbances. The simulation environment developed in this research was shown to be a useful tool to test strategies for dosing flux enhancer into AnMBRs.

13.
Water Res ; 215: 118249, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290870

RESUMEN

A semi-industrial scale AnMBR plant was operated for more than 600 days to evaluate the long-term operation of this technology at ambient temperature (ranging from 10 to 27 ○C), variable hydraulic retention times (HRT) (from 25 to 41 h) and influent loads (mostly between 15 and 45 kg COD·d-1). The plant was fed with sulfate-rich high-loaded municipal wastewater from the pre-treatment of a full-scale WWTP. The results showed promising AnMBR performance as the core technology for wastewater treatment, obtaining an average 87.2 ± 6.1 % COD removal during long-term operation, with 40 % of the data over 90%. Five periods were considered to evaluate the effect of HRT, influent characteristics, COD/SO42--S ratio and temperature on the biological process. In the selected periods, methane yields varied from 70.2±36.0 to 169.0±95.1 STP L CH4·kg-1 CODinf, depending on the influent sulfate concentration, and wasting sludge production was reduced by between 8 % and 42 % compared to conventional activated sludge systems. The effluent exhibited a significant nutrient recovery potential. Temperature, HRT, SRT and influent COD/SO42--S ratio were corroborated as crucial parameters to consider in maximizing AnMBR performance.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Reactores Biológicos , Aguas del Alcantarillado , Temperatura , Eliminación de Residuos Líquidos/métodos
14.
Bioresour Technol ; 345: 126470, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34863846

RESUMEN

The present study introduced a new method for enhanced biomethane production and pollution control of swine wastewater (SW) using anaerobic membrane bioreactor (AnMBR). Results confirmed 35 °C as the optimum temperature for enhanced anaerobic digestion which resulted in relatively higher methane production rate and potential. In AnMBR system, robust pollutants removal and conversion rate were achieved under various hydraulic retention time (HRT) ranging from 20 to 10 days, while the highest methane yield (0.24 L/g-CODremoved) and microbial activity (6.65 mg-COD/g-VSS·h) were recorded at HRT of 15 days. Reduction of HRT to 10 days resulted in serious membrane fouling due to accumulation of extracellularpolymericsubstances(EPS) and cake layer on the membrane. However, cake layer as the dominant membrane foulant could be effectively removed through periodic physical backwash to recover the membrane permeability. Overall, the suggested AnMBR is a promising technology to enhance SW treatment and energy recovery.


Asunto(s)
Ganado , Purificación del Agua , Anaerobiosis , Animales , Reactores Biológicos , Membranas Artificiales , Metano , Porcinos , Eliminación de Residuos Líquidos , Aguas Residuales
15.
Water Res ; 211: 118055, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042072

RESUMEN

Anaerobic membrane bioreactor (AnMBR) is a low-energy and promising solution for sewage treatment. During the treatment, the fouled membrane of AnMBR is recognized as an important barrier against pathogenic viruses. Here, the role of membrane fouling of an AnMBR at room temperature in the virus removal was investigated using MS2 bacteriophage as a virus surrogate. Results revealed that the virus removal efficiency of AnMBR was in the range of 0.2 to 3.6 logs, gradually increasing with the course of AnMBR operation. Virus removal efficiency was found to be significantly correlated with transmembrane pressure (R2=0.92, p<0.01), especially in the rapid fouling stage, indicating that membrane fouling was the key factor in the virus removal. The proportion of virus decreased from 52.03% to 15.04% in the membrane foulants when membrane fouling was aggravating rapidly, yet increased from 0.74% to 21.52% in the mixed liquor. Meanwhile, the permeate flux dramatically dropped. These imply that the primary rejection mechanism of virus by membrane in the slow fouling stage is the virus adsorption onto membrane, while the sieving effect is the main reason in the rapid fouling stage. Ex-situ virus rejection test unveiled that the cake layer was the main contributor to the overall virus rejection, while the greatest resistance-specific virus rejection was provided by the organic pore blocking. This paper provides operation strategies to balance enhanced virus removal and high permeate flux by regulating the membrane fouling process.


Asunto(s)
Aguas del Alcantarillado , Virus , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales
16.
Sci Total Environ ; 802: 149612, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438128

RESUMEN

The application of Anaerobic Membrane Bioreactors (AnMBRs) for municipal wastewater treatment has been made sufficiently sustainable for practical implementations. The potential benefits are significant as AnMBRs effectively remove a broad range of contaminants from wastewater for water reuse, degrade organics in wastewater to yield methane-rich biogas for resultant energy production, and concentrate nutrients for subsequent recovery for fertilizer production. However, there still exist some concerns requiring vigilant considerations to make AnMBRs economically and technically viable. This review paper briefly describes process fundamentals and the basic AnMBR configurations and highlights six major factors which obstruct the way to AnMBRs installations affecting their performance for municipal wastewater treatment: (i) organic strength, (ii) membrane fouling, (iii) salinity build-up, (iv) inhibitory substances, (v) temperature, and (vi) membrane stability. This review also covers the energy utilization and energy potential in AnMBRs aiming energy neutrality or positivity of the systems which entails the requirement to further determine the economics of AnMBRs. The implications and related discussions have also been made on future perspectives of the concurrent challenges being faced in AnMBRs operation.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Metano , Aguas del Alcantarillado , Aguas Residuales
17.
Sci Total Environ ; 825: 153907, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183622

RESUMEN

This research investigated the impact of permeate flux and gas sparging rate on membrane permeability, dissolved and colloidal organic matter (DCOM) rejection and process economics of granular anaerobic membrane bioreactors (AnMBRs). The goal of the study was to understand how membrane fouling control strategies influence granular AnMBR economics. To this end, short- and long-term filtration tests were performed under different permeate flux and specific gas demand (SGD) conditions. The results showed that flux and SGD conditions had a direct impact on membrane fouling. At normalised fluxes (J20) of 4.4 and 8.7 L m-2 h-1 (LMH) the most favourable SGD condition was 0.5 m3 m-2 h-1, whereas at J20 of 13.0 and 16.7 LMH the most favourable SGD condition was 1.0 m3 m-2 h-1. The flux and the SGD did not have a direct impact on DCOM rejection, with values ranging between 31 and 44%. The three-dimensional excitation-emission matrix fluorescence (3DEEM) spectra showed that protein-like fluorophores were predominant in mixed liquor and permeate samples (67-79%) and were retained by the membrane (39-50%). This suggests that protein-like fluorophores could be an important foulant for these systems. The economic analysis showed that operating the membranes at moderate fluxes (J20 = 7.8 LMH) and SGD (0.5 m3 m-2 h-1) could be the most favourable alternative. Finally, a sensitivity analysis illustrated that electricity and membrane cost were the most sensitive economic parameters, which highlights the importance of reducing SGD requirements and improving membrane permeability to reduce costs of granular AnMBRs.


Asunto(s)
Membranas Artificiales , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Filtración , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
18.
Membranes (Basel) ; 11(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564466

RESUMEN

The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent (POME) were investigated in this study. Three different organic loading rates (OLRs) were applied with prolonged sludge retention time throughout a long operation time (270 days). The organic foulant was characterized by biomass concentration and concentration of extracellular polymeric substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology and inorganic elements were analyzed by field emission scanning electron microscope coupled with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic force microscopy. The results showed that the formation and accumulation of protein EPS in the cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds) and microbial metabolic products (protein) significantly affected membrane fouling in the high-rate operation.

19.
Bioresour Technol ; 330: 124978, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33770732

RESUMEN

The implementation of anaerobic membrane bioreactor as mainstream technology would reduce the load of sidestream anaerobic digesters. This research evaluated the techno-economic implications of co-digesting sewage sludge and food waste in such wastewater treatment plants to optimise the usage of the sludge line infrastructure. Three organic loading rates (1.0, 1.5 and 2.0 kg VS m-3 d-1) and different strategies to manage the additional nutrients backload were considered. Results showed that the higher electricity revenue from co-digesting food waste offsets the additional costs of food waste acceptance infrastructure and biosolids disposal. However, the higher electricity revenue did not offset the additional costs when the nutrients backload was treated in the sidestream (partial-nitritation/anammox and struvite precipitation). Biosolids disposal was identified as the most important gross cost contributor in all the scenarios. Finally, a sensitivity analysis showed that food waste gate fee had a noticeable influence on co-digestion economic feasibility.


Asunto(s)
Eliminación de Residuos , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Digestión , Alimentos , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
20.
Sci Total Environ ; 750: 141625, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871369

RESUMEN

This research evaluated the performance of a lab-scale anaerobic membrane bioreactor (AnMBR) treating municipal sewage pre-concentrated by forward osmosis (FO). The organic loading rate (OLR) and sodium concentrations of the synthetic sewage stepwise increased from 0.3 to 2.0 g COD L-1 d-1 and from 0.28 to 2.30 g Na+ L-1 to simulate pre-concentration factors of 1, 2, 5 and 10. No major operational problems were observed during AnMBR operation, with COD removal efficiencies ranging between 90 and 96%. The methane yield progressively increased from 214 ± 79 to 322 ± 60 mL CH4 g-1 COD as the pre-concentration factor increased from 1 to 10. This was mainly attributed to the lower fraction of methane dissolved lost in the permeate at higher OLRs. Interestingly, at the highest pre-concentration factor (2.30 g Na+ L-1) the difference between the permeate and the digester soluble COD indicated that membrane biofilm also played a role in COD removal. Finally, a preliminary energy and economic analysis showed that, at a pre-concentration factor of 10, the AnMBR temperature could be increased 10 °C and achieve a positive net present value (NPV) of 4 M€ for a newly constructed AnMBR treating 10,000 m3 d-1 of pre-concentrated sewage with an AnMBR lifetime of 20 years.


Asunto(s)
Membranas Artificiales , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Metano , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA