Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecotoxicol Environ Saf ; 260: 115084, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267780

RESUMEN

Pharmaceutically active compounds are common and increasing in the aquatic environment. Evidence suggests they have adverse effects on non-target organisms, and they are classified as emerging pollutants for a variety of aquatic organisms. To determine the effects of environmentally relevant levels of psychoactive compounds on non-target organisms, we analyzed cardiac and locomotory activity in early developmental stages of marbled crayfish Procambarus virginalis. Responses to sertraline, methamphetamine, and a mixture of citalopram, oxazepam, sertraline, tramadol, venlafaxine, and methamphetamine at a concentration of 1 µg L-1 of each compound were assessed. On day four of exposure, cardiac activity was recorded for 5 min, and on day eight, locomotory activity was recorded for 15 min. There was a significant increase (p < 0.01) in heart rate in methamphetamine-exposed and Mix-exposed juveniles compared to the unexposed control and there was significant difference (p < 0.01) in proportion of time (activity %) was observed with sertraline-exposed, whereas velocity, and distance moved did not significantly differ (p > 0.05) in exposed and control animals. These findings revealed that low concentrations of chemicals and their mixtures can modify the physiological state of aquatic animals without outward manifestations (activity, distance moved, and velocity). Aquatic animals can be impacted earlier than is visible, but effects can potentially lead to substantial changes in populations and in ecosystem processes. Additional research to investigate chemical combinations, exposure systems, and organism physiological and molecular responses may provide evidence of broad impact of environmental pharmaceuticals.


Asunto(s)
Metanfetamina , Contaminantes Químicos del Agua , Animales , Astacoidea/fisiología , Ecosistema , Sertralina , Metanfetamina/farmacología , Locomoción , Contaminantes Químicos del Agua/farmacología
2.
Chemosphere ; 359: 142368, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763397

RESUMEN

Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.


Asunto(s)
Carbón Orgánico , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Adsorción , Metales Pesados/química , Purificación del Agua/métodos
3.
Environ Toxicol Pharmacol ; 90: 103818, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35074562

RESUMEN

The aim of this study was to reveal the effects of foodborne fluoxetine on morphological and condition profile, hematological profile, biochemical and oxidative stress indices on juvenile rainbow trout. The study was performed according to OECD Guideline No. 215. Fluoxetine was incorporated into Biomar 921 pellets at a dose of 0.047 mg/kg (environmental concentration), 0.577 mg/kg and 6.7 mg/kg. There was statistically significant change in hematological profile, including an increasing trend in neutrophil/lymphocyte ratio and a decreasing trend in the number of lymphocytes. Measurements of oxidative stress indicated decreased activity of the detoxifying enzyme glutathione-S-transferase in the liver and kidney. However, the measurement of GR, GPx, CAT, SOD activity, and TBARS showed no changes. Histopathological examination revealed damage to the proximal tubules of caudal kidney in exposed groups. This study confirms that fluoxetine has a significant effect on immune response.


Asunto(s)
Fluoxetina/toxicidad , Oncorhynchus mykiss/inmunología , Alimentación Animal , Animales , Antidepresivos de Segunda Generación/toxicidad , Recuento de Células Sanguíneas , Contaminación de Alimentos , Inmunidad/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Oncorhynchus mykiss/sangre , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
4.
Environ Toxicol Pharmacol ; 87: 103687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34144183

RESUMEN

In the current study the response of aquatic macroinvertebrate communities to multiple anthropogenic stressors in a typical lowland river that crosses pristine sectors situated toward headwaters, as well as densely populated urban areas was assessed. We wished to develop an effective bioassay procedure for assessing water and sediment quality in lotic ecosystems from Romania with the aid of macroinvertebrate organisms correlated with physico-chemical parameters and pollutants in both dissolved fractions and material bonded to sediment. A fast scanning approach of the river, from springs to the mouth, was employed. We found significant changes in physico-chemical parameters along a longitudinal gradient, the highest values being registered within the urban area and heavily agriculturally developed areas. The macroinvertebrates showed affinities for certain abiotic factors, emphasising their potential use for future studies as reliable ecological indicators, shaped by a synergic combination of urban effects and magnitude of type of land use.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Invertebrados/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Bioensayo , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Actividades Humanas , Ríos , Rumanía , Contaminantes Químicos del Agua/análisis
5.
Front Physiol ; 12: 791834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955897

RESUMEN

In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.

6.
Environ Pollut ; 263(Pt A): 114490, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32283463

RESUMEN

Microplastics pose threats to aquatic environments because they serve as hard-substrate for microbial community colonization and biofilm formation due to their long-life span and hydrophobic surface which can impact on aquatic ecosystems. However, the association between microplastics and other pollutants, particularly nutrients and metals in river sediments are largely unknown. In this study, microplastics abundance and hazard scores which are the risks arising from chemical compounds used for plastics manufacture, and the correlations between microplastics and the concentrations of total carbon (TC), total nitrogen (TN), total phosphorus (TP) and metals commonly present in the urban environment such as Al, As, Cr, Co, Cu, Fe, Mg, Mn, Ni, Cd, Se, Sr, Zn, Pb, in Brisbane River sediments were investigated. The study confirmed that the risk associated with microplastics is based on their monomer composition rather than the quantities present. Sediments having relatively higher abundance of microplastics with a relatively lower hazard score result in higher nutrient concentrations. The concentrations of metals in river sediments are more dependent on their original sources rather than the concentration of microplastics. Nevertheless, leachate from plastics should be considered in risk assessment in relation to the association between metals and plastics in aquatic environments.


Asunto(s)
Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Nutrientes , Plásticos , Ríos
7.
Sci Total Environ ; 654: 324-337, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448654

RESUMEN

Hundreds of tons of pharmaceutical compounds are annually dispensed and consumed worldwide. Pharmaceuticals are an important class of emerging environmental micropollutants: their presence in water bodies is an increasing environmental concern. The aim of this review paper is to provide a comprehensive review of the occurrence of pharmaceuticals in freshwater aquatic environments in the African and European context. A literature survey has been performed, resulting in 3024 data points related to environmental occurrence. The concentration levels of 71 pharmaceuticals were assessed. The top ten most frequently detected and quantified compounds in both continents were sulfamethoxazole, carbamazepine, diclofenac, trimethoprim, ibuprofen, naproxen, paracetamol (acetaminophen), ketoprofen, venlafaxine and clarithromycin. The maximum concentrations of 17ß-estradiol, estriol, ciprofloxacin, sulfamethoxazole, paracetamol, naproxen reported in African aquatic environments were ~3140, ~20,000, ~125, ~100, ~215 and ~171 times higher, respectively, than the concentrations reported in European based studies. The variation in pharmaceutical consumption, partial removal of pharmaceuticals in wastewater treatment processes, and the direct discharge of livestock animal farm wastewater were identified among the major reasons for the observed differences. Several pharmaceuticals were found in aquatic environments of both continents in concentration levels higher than their ecotoxicity endpoints. In Europe, compounds such as diclofenac, ibuprofen, triclosan, sulfadimidine, carbamazepine and fluoxetine were reported in a concentration higher than the available ecotoxicity endpoints. In Africa, much more compounds reached concentrations more than the ecotoxicity endpoints, including diclofenac, ibuprofen, paracetamol, naproxen, ciprofloxacin, triclosan, trimethoprim, sulfamethoxazole, carbamazepine and fluoxetine, estriol and 17ß-estradiol. Details for each therapeutic group are presented in this review.


Asunto(s)
Carbamazepina/análisis , Monitoreo del Ambiente/métodos , Agua Dulce/química , Preparaciones Farmacéuticas/análisis , Sulfametoxazol/análisis , Contaminantes Químicos del Agua/análisis , África , Ecotoxicología , Europa (Continente)
8.
Aquat Toxicol ; 213: 105222, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31212248

RESUMEN

Pharmaceutically active compounds are major contaminants of aquatic environments that show direct and indirect effects on aquatic organisms even at low concentrations. The aim of this study was to assess the effects of the illicit drug methamphetamine and the antidepressant sertraline on clonal marbled crayfish Procambarus virginalis. Crayfish exposed to the environmentally relevant concentrations of methamphetamine of ∼1 µg L-1 did not exhibit significant differences from unexposed controls in distance moved, velocity, and activity level with or without available shelter. Sertraline-exposed (∼1 µg L-1) crayfish were significantly more active, regardless of available shelter, and moved greater distances when shelter was available, compared to control crayfish. Crayfish exposed to methamphetamine and sertraline spent significantly more time outside the shelters compared to controls. Sertraline-exposed crayfish spawned more frequently and showed higher mortality than controls. The results suggest that the low environmental concentrations of the tested compounds could alter the behavior and life history traits of crayfish, resulting in higher reproductive effort and mortality.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/crecimiento & desarrollo , Astacoidea/efectos de los fármacos , Astacoidea/crecimiento & desarrollo , Conducta Animal/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Metanfetamina/toxicidad , Sertralina/toxicidad , Animales , Invertebrados , Contaminantes Químicos del Agua/toxicidad
9.
Chemosphere ; 188: 548-556, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28915373

RESUMEN

The potential for metals to bioaccumulate in aquatic species, such as fish, via trophic level transfer was investigated. An in vivo experiment was set up in a flow-through system in which juvenile rainbow trout were fed blue mussels collected from a Class A pristine site and an effluent-impacted river estuary, over a period of 28 days. Selected elements (As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Se, Sn, V, Zn) were determined in the mussels and fish tissues (muscle and skin) collected at 0, 14 and 28 days. This study reveals the occurrence of metals in mussels sampled in the Irish marine environment and highlights the bioaccumulation potential of metals in fish tissues via trophic transfer. All 14 monitored metals were determined in the mussels collected from both sites and mussels collected from the effluent-impacted site contained three times more Co, Mo, Sn and V than the mussels collected from the Class A site. Following a 28-day dietary exposure, concentrations of As and Se (fish muscle), and Pb, Se and Zn (fish skin), were significantly greater in fish feeding on contaminated mussels compared to those with a regular fish feed diet. The significance of metal detection and bioaccumulation in the mussel and fish tissues, highlights the potential for metal exposure to humans through the food chain. As fish are recommended as a healthy and nutritious food source, it is important to fully understand metal bioaccumulation in commercially important aquatic species and ensure the safety of human consumers.


Asunto(s)
Exposición Dietética/efectos adversos , Metales/análisis , Mytilus edulis/química , Oncorhynchus mykiss/metabolismo , Envejecimiento , Animales , Monitoreo del Ambiente/métodos , Humanos , Ríos/química , Alimentos Marinos , Contaminantes Químicos del Agua/análisis
10.
Environ Pollut ; 231(Pt 1): 954-970, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28888213

RESUMEN

Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta-blockers, perfluorinated compounds, personal care products and plasticisers), factors affecting contaminant fate, association with plastic micro-/nanoparticles and photochemical transformation are comprehensively evaluated.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Organismos Acuáticos , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA