Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118680, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561120

RESUMEN

Metals exert detrimental effects on various systems within the body, including the nervous system. Nevertheless, the dose-response relationship concerning the administration of low doses of metal mixtures remains inadequately explored. The assessment of neurotoxic effects of lead, cadmium, mercury, and arsenic mixture (MIX) administered at low dose ranges, was conducted using an in vivo approach. A subacute study was conducted on a rat model consisting of a control and five treatment groups subjected to oral exposure with gradually increasing doses (from MIX 1 to MIX 5). The results indicated that behavioural patterns in an already developed nervous system displayed a reduced susceptibility to the metal mixture exposure with tendency of higher doses to alter short term memory. However, the vulnerability of the mature brain to even minimal amounts of the investigated metal mixture was evident, particularly in the context of oxidative stress. Moreover, the study highlights superoxide dismutase's sensitivity as an early-stage neurotoxicity marker, as indicated by dose-dependent induction of oxidative stress in the brain revealed through Benchmark analysis. The narrowest Benchmark Dose Interval (BMDI) for superoxide dismutase (SOD) activity (1e-06 - 3.18e-05 mg As/kg b.w./day) indicates that arsenic may dictate the alterations in SOD activity when co-exposed with the other examined metals. The predicted Benchmark doses for oxidative stress parameters were very low, supporting "no-threshold" concept. Histopathological alterations were most severe in the groups treated with higher doses of metal mixture. Similarly, the brain acetylcholinesterase (AChE) activity demonstrated a dose-dependent decrease significant in higher doses, while BMDI suggested Cd as the main contributor in the examined metal mixture. These findings imply varying susceptibility of neurotoxic endpoints to different doses of environmentally relevant metal mixtures, advocating for risk assessment and regulatory measures to address metal pollution and enhance remediation strategies.


Asunto(s)
Relación Dosis-Respuesta a Droga , Animales , Ratas , Masculino , Contaminantes Ambientales/toxicidad , Encéfalo/efectos de los fármacos , Metales Pesados/toxicidad , Síndromes de Neurotoxicidad/etiología , Ratas Wistar , Arsénico/toxicidad , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo
2.
Environ Health ; 20(1): 84, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273995

RESUMEN

BACKGROUND: Epidemiological studies and research on laboratory animals link radiofrequency radiation (RFR) with impacts on the heart, brain, and other organs. Data from the large-scale animal studies conducted by the U.S. National Toxicology Program (NTP) and the Ramazzini Institute support the need for updated health-based guidelines for general population RFR exposure. OBJECTIVES: The development of RFR exposure limits expressed in whole-body Specific Absorption Rate (SAR), a metric of RFR energy absorbed by biological tissues. METHODS: Using frequentist and Bayesian averaging modeling of non-neoplastic lesion incidence data from the NTP study, we calculated the benchmark doses (BMD) that elicited a 10% response above background (BMD10) and the lower confidence limits on the BMD at 10% extra risk (BMDL10). Incidence data for individual neoplasms and combined tumor incidence were modeled for 5% and 10% response above background. RESULTS: Cardiomyopathy and increased risk of neoplasms in male rats were the most sensitive health outcomes following RFR exposures at 900 MHz frequency with Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) modulations. BMDL10 for all sites cardiomyopathy in male rats following 19 weeks of exposure, calculated with Bayesian model averaging, corresponded to 0.27-0.42 W/kg whole-body SAR for CDMA and 0.20-0.29 W/kg for GSM modulation. BMDL10 for right ventricle cardiomyopathy in female rats following 2 years of exposure corresponded to 2.7-5.16 W/kg whole-body SAR for CDMA and 1.91-2.18 W/kg for GSM modulation. For multi-site tumor modeling using the multistage cancer model with a 5% extra risk, BMDL5 in male rats corresponded to 0.31 W/kg for CDMA and 0.21 W/kg for GSM modulation. CONCLUSION: BMDL10 range of 0.2-0.4 W/kg for all sites cardiomyopathy in male rats was selected as a point of departure. Applying two ten-fold safety factors for interspecies and intraspecies variability, we derived a whole-body SAR limit of 2 to 4 mW/kg, an exposure level that is 20-40-fold lower than the legally permissible level of 0.08 W/kg for whole-body SAR under the current U.S. regulations. Use of an additional ten-fold children's health safety factor points to a whole-body SAR limit of 0.2-0.4 mW/kg for young children.


Asunto(s)
Cardiomiopatías/prevención & control , Modelos Biológicos , Neoplasias Inducidas por Radiación/prevención & control , Exposición a la Radiación/normas , Ondas de Radio , Tecnología Inalámbrica , Adulto , Animales , Teorema de Bayes , Benchmarking , Femenino , Humanos , Masculino , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA