Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.076
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2310288120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154062

RESUMEN

Cytochrome c oxidase deficiency (COXD) is an inherited disorder characterized by the absence or mutation in the genes encoding for the cytochrome c oxidase protein (COX). COX deficiency results in severe muscle weakness, heart, liver, and kidney disorders, as well as brain damage in infants and adolescents, leading to death in many cases. With no cure for this disorder, finding an efficient, inexpensive, and early means of diagnosis is essential to minimize symptoms and long-term disabilities. Furthermore, muscle biopsy, the traditional detection method, is invasive, expensive, and time-consuming. This study demonstrates the applicability of scanning electrochemical microscopy to quantify COX activity in living human fibroblast cells. Taking advantage of the interaction between the redox mediator N, N, N', N'-tetramethyl-para-phenylene-diamine, and COX, the enzymatic activity was successfully quantified by monitoring current changes using a platinum microelectrode and determining the apparent heterogeneous rate constant k0 using numerical modeling. This study provides a foundation for developing a diagnostic method for detecting COXD in infants, which has the potential to increase treatment effectiveness and improve the quality of life of affected individuals.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Lactante , Humanos , Adolescente , Deficiencia de Citocromo-c Oxidasa/genética , Microscopía Electroquímica de Rastreo , Calidad de Vida , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(19): e2218610120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126679

RESUMEN

Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes. Specifically, we demonstrate that a bacterial two-component nitrate-sensing system (NarX-NarL) can be reproduced outside of a cell using synthetic membranes and cell-free protein expression systems. We find that performance and sensitivity of the TCS can be tuned by altering the biophysical properties of the membrane in which the histidine kinase (NarX) is integrated. Through protein engineering efforts, we modify the sensing domain of NarX to generate sensors capable of detecting an array of ligands. Finally, we demonstrate that these systems can sense ligands in relevant sample environments. By leveraging membrane and protein design, this work helps reveal how transmembrane sensing can be recapitulated outside of the cell, adding to the arsenal of deployable cell-free systems primed for real world biosensing.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ADN/metabolismo
3.
Circulation ; 149(19): e1134-e1142, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38545775

RESUMEN

Wearable biosensors (wearables) enable continual, noninvasive physiologic and behavioral monitoring at home for those with pediatric or congenital heart disease. Wearables allow patients to access their personal data and monitor their health. Despite substantial technologic advances in recent years, issues with hardware design, data analysis, and integration into the clinical workflow prevent wearables from reaching their potential in high-risk congenital heart disease populations. This science advisory reviews the use of wearables in patients with congenital heart disease, how to improve these technologies for clinicians and patients, and ethical and regulatory considerations. Challenges related to the use of wearables are common to every clinical setting, but specific topics for consideration in congenital heart disease are highlighted.


Asunto(s)
American Heart Association , Técnicas Biosensibles , Cardiopatías Congénitas , Dispositivos Electrónicos Vestibles , Humanos , Cardiopatías Congénitas/diagnóstico , Técnicas Biosensibles/instrumentación , Estados Unidos
4.
Nano Lett ; 24(37): 11335-11348, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39213537

RESUMEN

Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.


Asunto(s)
ADN , Nanotecnología , ADN/química , Nanotecnología/métodos , Humanos , Nanoestructuras/química , Conformación de Ácido Nucleico , Nanopartículas/química , Proteínas/química
5.
Nano Lett ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602330

RESUMEN

The miniaturization of biomedical microrobots is crucial for their in vivo applications. However, it is challenging to reduce their size while maintaining their biomedical functions. To resolve this contradiction, we propose a semiphysical design concept for developing miniaturized microrobots, in which invisible components such as light beams are utilized to replace most of the physical parts of a microrobot, thus minimizing its physical size without sacrificing its biomedical functions. According to this design, we have constructed a semiphysical microrobot (SPM) composed of main light beam, light-responsive microparticle, and auxiliary light beam, serving as the actuation system, recognition part, and surgical claws, respectively. Based on the functions of actuation, biosensing, and microsurgery, a SPM has been applied for a series of applications, including thrombus elimination at the branch vessel, stratified removal of multilayer thrombus, and biosensing-guided microsurgery. The proposed semiphysical design concept should bring new insight into the development of miniaturized biomedical microrobots.

6.
Nano Lett ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360805

RESUMEN

Microrobots possessing multifunctional integration are desired for therapeutics and biomedicine applications. However, existing microrobots with desired functionalities need to be fabricated through complex procedures due to their constrained volume, limited manufacturing processes, and lack of effective in vivo observation methods. Inspired by bubbles exhibiting various abilities, we report magnetic air bubble microrobots with simpler structures to simultaneously integrate multiple functions, including microcargo delivery, multimode locomotion, imaging, and biosensing. Contributed by buoyancy and magnetic actuation to overcome obstacles, flexible three-dimensional locomotion is implemented, guaranteeing the integrity of micro-objects adsorbed on the surface of the air bubble microrobot. Introducing air microbubbles enhances the ultrasound imaging capability of microrobots in the vascular system of mice in vivo, facilitating ample medical applications. Moreover, air-liquid reactions endow microrobots with rapid pH biosensing. This work provides a unique strategy to utilize relatively simple air bubbles to achieve the complex functions of microrobots for biomedical applications.

7.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391386

RESUMEN

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Masculino , Humanos , Antígeno Prostático Específico , Inmunoensayo/métodos , Antioxidantes , Peroxidasas , Colorimetría/métodos , Técnicas Biosensibles/métodos
8.
Med Res Rev ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287199

RESUMEN

Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.

9.
Biochem Biophys Res Commun ; 739: 150577, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181072

RESUMEN

The development of portable, cost-effective, and straightforward DNA biosensors holds immense importance in various fields, including healthcare, environmental monitoring, and food safety. This study contributes to the objective by introducing an innovative approach for synthesizing carbon dots (Cdots) with high quantum yield (QY) and remarkable selectivity for Fe3+ ions. Utilizing o-phenylenediamine as a precursor, the study achieved a straightforward and environmentally friendly synthesis method, enabling the efficient detachment of metal ions from the Cdot surface upon introducing pyrophosphate (PPi). The presence of surface hydroxyl and amino groups facilitated specific Fe3+ recognition. Employing D-optimal response surface methodology, the study optimized Cdot synthesis parameters, identifying temperature and heating time as critical factors influencing QY. Statistical analysis confirmed the model's reliability, predicting maximum QY of 48.8 % with minimal deviation from experimental results. Characterization studies revealed the amorphous nature of Cdots through HR-TEM, XRD, and FTIR analysis. Furthermore, the proposed LAMP/PPi biosensing technique demonstrated higher sensitivity, specificity, and repeatability, with negligible interference from common anions and efficacy across varying pH levels. The limit of detection (LOD) of 0.079 (±0.01) µM and the detection range of 0.1 µM-2 mM underscore the biosensor's practical utility. This study highlights a promising direction for developing paper-based LAMP/PPi biosensors with potential diagnostics and environmental monitoring applications. Significantly, the biosensing technique is applicable to any DNA amplification method generating pyrophosphate (PPi) as a by-product.

10.
Small ; 20(2): e2304852, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658499

RESUMEN

Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.


Asunto(s)
Técnicas Biosensibles , Riboswitch , Técnicas Biosensibles/métodos , Terapia Biológica , Antibacterianos
11.
Small ; 20(33): e2400086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563581

RESUMEN

Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.


Asunto(s)
Células Artificiales , Técnicas Biosensibles , Microfluídica , Técnicas Biosensibles/métodos , Microfluídica/métodos , Células Artificiales/química , Humanos , Liposomas/química
12.
Small ; 20(5): e2304966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752777

RESUMEN

The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost-effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi-materials multi-scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly-free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub-100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nm and a linear dynamic range of 1-10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next-generation integrated devices for broad applications in point-of-care health monitoring and sensing.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Microfluídica , Técnicas Biosensibles/métodos , Impresión Tridimensional , Lactatos
13.
Small ; 20(38): e2400531, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38742980

RESUMEN

A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.


Asunto(s)
Desinfección , Luz , Nanoestructuras , Nanoestructuras/química , Desinfección/métodos , Máscaras , Técnicas Biosensibles/métodos , Humanos
14.
Small ; 20(31): e2309053, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38602194

RESUMEN

Liquid crystals (LCs) are emerging as novel platforms for chemical, physical, and biological sensing. They can be used to detect biological amphiphiles such as lipids, fatty acids, digestive surfactants, and bacterial endotoxins. However, designing LC-based sensors in a manner that preserves their sensitivity and responsiveness to these stimuli, and possibly improves biocompatibility, remains challenging. In this work, the stabilization of LC droplets by oleosins, plant-sourced and highly surface active proteins due to their extended amphipathic helix, is investigated. Purified oleosins, at sub-micromolar concentrations, are shown to readily stabilize nematic LC droplets without switching their alignment, allowing them to detect surfactants at micromolar concentrations. Direct evidence of localization of oleosins at the LC-water interface is provided with fluorescent labeling, and the stabilized droplets remain stable over months. Interestingly, chiral LC droplets readily switch in the presence of nanomolar oleosin concentrations, an unexpected behavior that is explained by accounting for the energy barriers required for switching the alignment between the two cases. This leads thus to a twofold conclusion: oleosin-stabilized nematic LC droplets present a biocompatible alternative for bioanalyte detection, while chiral LCs can be further investigated for use as highly sensitive sensors for detecting amphipathic helices in biological systems.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Cristales Líquidos/química , Técnicas Biosensibles/métodos , Proteínas de Plantas/química , Tensoactivos/química
15.
Small ; 20(27): e2308285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38353330

RESUMEN

Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.

16.
Small ; : e2401127, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884187

RESUMEN

In situ patterning of biomolecules and living organisms while retaining their biological activity is extremely challenging, primarily because such patterning typically involves thermal stresses that could be substantially higher than the physiological thermal or stress tolerance level. Top-down patterning approaches are especially prone to these issues, while bottom-up approaches suffer from a lack of control in developing defined structures and the time required for patterning. A microbubble generated and manipulated by optical tweezers (microbubble lithography) is used to self-assemble and pattern living organisms in continuous microscopic structures in real-time, where the material thus patterned remains biologically active due to their ability to withstand elevated temperatures for short exposures. Successful patterns of microorganisms (Escherichia coli, Lactococcus. lactis and the Type A influenza virus) are demonstrated, as well as reporter proteins such as green fluorescent protein (GFP) on functionalized substrates with high signal-to-noise ratio and selectivity. Together, the data presented herein may open up fascinating possibilities in rapid in situ parallelized diagnostics of multiple pathogens and bioelectronics.

17.
Small ; 20(24): e2310732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299771

RESUMEN

Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Técnicas Biosensibles/métodos , Ácidos Nucleicos/química , Humanos , Animales
18.
Small ; 20(6): e2306291, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775937

RESUMEN

The traditional tris(bipyridine)ruthenium(II) complex suffers from the notorious aggregation-caused quenching effect, which greatly compromises its electrochemiluminescence (ECL) efficiency, thus hindering further applications in biosensing and clinical diagnosis. Here, the ultrathin tetraphenylethylene-active tris(bipyridine)ruthenium(II) derivative nanosheets (abbreviated as Ru-TPE NSs) are synthesized through a protein-assisted self-assembly strategy for ultrasensitive ECL detection of human telomerase RNA (hTR) for the first time. The synthesized Ru-TPE NSs exhibit the aggregation-induced enhanced ECL behavior and excellent water-dispersion. Surprisingly, up to a 106.5-fold increase in the ECL efficiency of Ru-TPE NSs is demonstrated compared with the dispersed molecules in an organic solution. The restriction of intramolecular motions is confirmed to be responsible for the significant ECL enhancement. Therefore, this proposed ECL biosensor shows high sensitivity and excellent selectivity for hTR based on Ru-TPE NSs as efficient ECL beacons and the catalytic hairpin assembly as signal amplification, whose detection limit is as low as 8.0 fm, which is far superior to the previously reported works. Here, a promising analytical method is provided for early clinical diagnosis and a new type of efficient ECL emitters with great application prospects is represented.


Asunto(s)
Técnicas Biosensibles , Rutenio , Telomerasa , Humanos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ARN , Técnicas Biosensibles/métodos
19.
Small ; 20(11): e2307491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880860

RESUMEN

The environmental monitoring and remediation of highly toxic inorganic arsenic species in natural water are needed for the benefit of the ecosystem. Current studies on arsenic detection and removal often employ separate materials, which exhibit blue luminescence with fluorescence quenching, making them unsuitable for biological and environmental samples. In this study, carbon dot-embedded mesoporous silica tubes functionalized with melamine are synthesized to address these limitations and enable specific and turn-on probing of inorganic arsenic. The newly synthesized material demonstrates excitation-independent yellow luminescence and can effectively detect both As (III) and As (V) at low detection limits (11 × 10-9 m, 11.2 × 10-9 m), well below the prescribed threshold limits in drinking water. It also exhibits a high adsorption capacity (≈125, 159 mg g-1 ) with fast kinetics. The material's applicability in environmental samples is validated through the successful quantification of arsenic in real samples with satisfactory recoveries. Moreover, the material shows recyclability for reuse, as demonstrated by its arsenic adsorption and desorption for several cycles under basic conditions. Additionally, the material's capability for monitoring arsenic in a biological sample (Artemia salina) is demonstrated through fluorescence imaging. The encouraging outcomes underscore the material's potential use in monitoring and mitigating arsenic in aqueous systems.


Asunto(s)
Arsénico , Arsenicales , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Carbono , Dióxido de Silicio , Ecosistema , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
20.
Small ; 20(40): e2310026, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860348

RESUMEN

Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.


Asunto(s)
ADN , Ácidos Nucleicos , Ácidos Nucleicos/química , ADN/química , Humanos , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA