Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.179
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453153

RESUMEN

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Asunto(s)
Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Recuento de Colonia Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad , Ratones Endogámicos C57BL , Sulfuros/metabolismo , Taurina/farmacología
2.
Proc Natl Acad Sci U S A ; 120(13): e2215030120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36952378

RESUMEN

While the effective g-factor can be anisotropic due to the spin-orbit interaction (SOI), its existence in solids cannot be simply asserted from a band structure, which hinders progress on studies from such viewpoints. The effective g-factor in bismuth (Bi) is largely anisotropic; especially for holes at T-point, the effective g-factor perpendicular to the trigonal axis is negligibly small (<0.112), whereas the effective g-factor along the trigonal axis is very large (62.7). We clarified in this work that the large anisotropy of effective g-factor gives rise to the large spin conversion anisotropy in Bi from experimental and theoretical approaches. Spin-torque ferromagnetic resonance was applied to estimate the spin conversion efficiency in rhombohedral (110) Bi to be 17 to 27%, which is unlike the negligibly small efficiency in Bi(111). Harmonic Hall measurements support the large spin conversion efficiency in Bi(110). A large spin conversion anisotropy as the clear manifestation of the anisotropy of the effective g-factor is observed. Beyond the emblematic case of Bi, our study unveiled the significance of the effective g-factor anisotropy in condensed-matter physics and can pave a pathway toward establishing novel spin physics under g-factor control.

3.
Proc Natl Acad Sci U S A ; 119(30): e2122436119, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862455

RESUMEN

Mechanistic studies on lead halide perovskites (LHPs) in recent years have suggested charge carrier screening as partially responsible for long carrier diffusion lengths and lifetimes that are key to superior optoelectronic properties. These findings have led to the ferroelectric large polaron proposal, which attributes efficient charge carrier screening to the extended ordering of dipoles from symmetry-breaking unit cells that undergo local structural distortion and break inversion symmetry. It remains an open question whether this proposal applies in general to semiconductors with LHP-like anharmonic and dynamically disordered phonons. Here, we study electron-phonon coupling in Bi2O2Se, a semiconductor which bears resemblance to LHPs in ionic bonding, spin-orbit coupling, band transport with long carrier diffusion lengths and lifetimes, and phonon disorder as revealed by temperature-dependent Raman spectroscopy. Using coherent phonon spectroscopy, we show the strong coupling of an anharmonic phonon mode at 1.50 THz to photo-excited charge carriers, while the Raman excitation of this mode is symmetry-forbidden in the ground-state. Density functional theory calculations show that this mode, originating from the A1g phonon of out-of-plane Bi/Se motion, gains oscillator strength from symmetry-lowering in polaron formation. Specifically, lattice distortion upon ultrafast charge localization results in extended ordering of symmetry-breaking unit cells and a planar polaron wavefunction, namely a two-dimensional polaron in a three-dimensional lattice. This study provides experimental and theoretical insights into charge interaction with anharmonic phonons in Bi2O2Se and suggests ferroelectric polaron formation may be a general principle for efficient charge carrier screening and for defect-tolerant semiconductors.

4.
Nano Lett ; 24(17): 5361-5370, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630986

RESUMEN

Size plays a crucial role in chemistry and material science. Subnanometer polyoxometalate (POM) clusters have gained attention in various fields, but their use in thermoelectrics is still limited. To address this issue, we propose the POM clusters as an effective second phase to enhance the thermoelectric properties of Bi0.4Sb1.6Te3. Thanks to their subnanometer size, POM clusters improve electrical transport behavior through the superposition of atomic orbitals and the interfacial scattering effect. Furthermore, their ultrasmall size strongly reduces thermal conductivity. Consequently, the introduction of a mere 0.1 mol % of POM into the Bi0.4Sb1.6Te3 matrix realizes a state-of-the-art zT value of 1.46 at 348 K, a 45% enhancement over Bi0.4Sb1.6Te3 (1.01), along with a maximum thermoelectric-conversion efficiency of the integrated module of 6.0%. The enhancement of carrier mobility and the suppression of thermal conduction achieved by introducing the subnanometer clusters hold promise for various applications, such as electronic devices and thermal management.

5.
Nano Lett ; 24(22): 6545-6552, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781416

RESUMEN

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

6.
Nano Lett ; 24(15): 4493-4497, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498733

RESUMEN

Strain solitons are quasi-dislocations that form in van der Waals materials to relieve the energy associated with lattice or rotational mismatch. Novel electronic properties of strain solitons were predicted and observed. To date, strain solitons have been observed only in exfoliated crystals or mechanically strained crystals. The lack of a scalable approach toward the generation of strain solitons poses a significant challenge in the study of and use of their properties. Here, we report the formation of strain solitons with epitaxial growth of bismuth on InSb(111)B by molecular beam epitaxy. The morphology of the strain solitons for films of varying thickness is characterized with scanning tunneling microscopy, and the local strain state is determined from atomic resolution images. Bending in the solitons is attributed to interactions with the interface, and large angle bending is associated with edge dislocations. Our results enable the scalable generation of strain solitons.

7.
Nano Lett ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833670

RESUMEN

Bismuth-based chalcogenides have emerged as promising candidates for next-generation, solution-processable semiconductors, mainly benefiting from their facile fabrication, low cost, excellent stability, and tunable optoelectronic properties. Particularly, the recently developed AgBiS2 solar cells have shown striking power conversion efficiencies. High performance bismuth-based photodetectors have also been extensively studied in the past few years. However, the fundamental properties of these Bi-based semiconductors have not been sufficiently investigated, which is crucial for further improving the device performance. Here, we introduce multiple time-resolved and steady-state techniques to fully characterize the charge carrier dynamics and charge transport of solution-processed Bi-based nanocrystals. It was found that the Ag-Bi ratio plays a critical role in charge transport. For Ag-deficient samples, silver bismuth sulfide thin films behave as localized state induced hopping charge transport, and the Ag-excess samples present band-like charge transport. This finding is crucial for developing more efficient Bi-based semiconductors and optoelectronic devices.

8.
Nano Lett ; 24(15): 4562-4570, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591327

RESUMEN

Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.


Asunto(s)
Glioma , Nanopartículas del Metal , Humanos , Bismuto , Radio (Anatomía) , Nanopartículas del Metal/química , Cráneo , Glioma/diagnóstico por imagen
9.
Nano Lett ; 24(17): 5110-5116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624179

RESUMEN

The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4-6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.

10.
Small ; 20(11): e2306795, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095535

RESUMEN

The formation of carbonate in neutral/alkaline solutions leads to carbonate crossover, severely reducing carbon dioxide (CO2 ) single pass conversion efficiency (SPCE). Thus, CO2 electrolysis is a prospective route to achieve high CO2 utilization under acidic environment. Bimetallic Bi-based catalysts obtained utilizing metal doping strategies exhibit enhanced CO2 -to-formic acid (HCOOH) selectivity in alkaline/neutral media. However, achieving high HCOOH selectivity remains challenging in acidic media. To this end, Indium (In) doped Bi2O2CO3 via hydrothermal method is prepared for in-situ electroreduction to In-Bi/BiOx nanosheets for acidic CO2 reduction reaction (CO2RR). In doping strategy regulates the electronic structure of Bi, promoting the fast derivatization of Bi2O2CO3 into Bi-O active sites to enhance CO2RR catalytic activity. The optimized Bi2 O2 CO3 -derived catalyst achieves the maximum HCOOH faradaic efficiency (FE) of 96% at 200 mA cm-2 . The SPCE for HCOOH production in acid is up to 36.6%, 2.2-fold higher than the best reported catalysts in alkaline environment. Furthermore, in situ Raman and X-ray photoelectron spectroscopy demonstrate that In-induced electronic structure modulation promotes a rapid structural evolution from nanobulks to Bi/BiOx nanosheets with more active species under acidic CO2 RR, which is a major factor in performance improvement.

11.
Small ; 20(1): e2304835, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653619

RESUMEN

Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.

12.
Small ; : e2402915, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845481

RESUMEN

The bismuth anode has garnered significant attention due to its high theoretical Na-storage capacity (386 mAh g-1). There have been numerous research reports on the stable solid electrolyte interphase (SEI) facilitated by electrolytes utilizing ether solvents. In this contribution, cyclic tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF) ethers are employed as solvents to investigate the sodium-ion storage properties of bismuth anodes. A series of detailed characterizations are utilized to analyze the impact of electrolyte solvation structure and SEI chemical composition on the kinetics of sodium-ion storage. The findings reveal that bismuth anodes in both THF and MeTHF-based electrolytes exhibit exceptional rate performance at low current densities, but in THF-based electrolytes, the reversible capacity is higher at high current densities (316.7 mAh g-1 in THF compared to 9.7 mAh g-1 in MeTHF at 50 A g-1). This stark difference is attributed to the formation of an inorganic-rich, thin, and uniform SEI derived from THF-based electrolyte. Although the SEI derived from MeTHF-based electrolyte also consists predominantly of inorganic components, it is thicker and contains more organic species compared to the THF-derived SEI, impeding charge transfer and ion diffusion. This study offers valuable insights into the utilization of cyclic ether electrolytes for Na-ion batteries.

13.
Small ; 20(26): e2311391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233208

RESUMEN

Guided by a superb dual-ions cosubstitution strategy, two novel, highly optically anisotropic hybrid bismuth halides are designed and synthesized. The first compound, Gu3Bi2NO3Cl8 (Gu = C(NH2)3), is developed using the 2D perovskite halide Cs3Bi2Cl9 as the maternal structure. This involved substituting all Cs+ cations with organic Gu+ and replacing some Cl- anions with [NO3]-. Further substitution of Cl- with additional [NO3]- resulted in the formation of nitrate-rich Gu2Bi(NO3)3Cl2 crystal, exhibiting a 3.4-fold increase in [NO3]- per unit volume. Both compounds have a structurally 0D nature, comprising bismuth-centered polyhedra formed by coordinated chlorides and monodentate/bidentate nitrate moieties, with Gu+ serving as a separator and linker. Notably, the presence of superb optically anisotropic dual-ions, i.e., planar Gu+ and [NO3]-, enables these crystals to possess sharply enhanced optical anisotropy, with birefringence values more than 1 order of magnitude higher than that of the initial crystal Cs3Bi2Cl9 (0.162/0.186vs 0.011 at 546 nm). The discovery and characterization of Gu3Bi2NO3Cl8 and Gu2Bi(NO3)3Cl2 crystals provide new insights into achieving expected modifications in optical properties through the utilization of a dual-ions cosubstitution strategy.

14.
Small ; : e2401213, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766921

RESUMEN

Bismuth vanadate (BiVO4) exhibits large absorption efficiency for hard X-rays, which endows it with a robust capacity to attenuate X-ray radiation across a broad energy range. The anisotropic properties of BiVO4 allow for the manipulation of their physical and chemical characteristics through crystallographic orientation and exposed facets. In this study, the issue of heavy recombination caused by sluggish electron transport in BiVO4 is successfully addressed by enhancing the abundance of the (040) crystal face ratio using a Co2+ crystal face exposure agent. The facet-dependent modifications exhibit excellent and balanced intrinsic charge transport properties, and finely optimize both the sensitivity and detection limit of BiVO4 X-ray detectors. As a result, ultra-stable BiVO4 metal oxide X-ray detectors demonstrate a high sensitivity of 3164 µC Gyair -1 cm-2 and a low detection limit of 20.76 nGyair s-1 under 110 kVp hard X-rays, establishing a new benchmark for X-ray detectors based on polycrystalline Bi-halides and metal oxides. These findings highlight the significance of crystal orientation in optimizing materials for X-ray detection, setting a new sensitivity record for X-ray detectors based on polycrystalline Bi-halides and metal oxides, which paves the way for the development of advanced, low-dose, and highly stable imaging systems specifically for hard X-rays.

15.
Small ; : e2401017, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593292

RESUMEN

Doping is a recognized method for enhancing catalytic performance. The introduction of strains is a common consequence of doping, although it is often overlooked. Differentiating the impact of doping and strain on catalytic performance poses a significant challenge. In this study, Cu-doped Bi catalysts with substantial tensile strain are synthesized. The synergistic effects of doping and strain in bismuth result in a remarkable CO2RR performance. Under optimized conditions, Cu1/6-Bi demonstrates exceptional formate Faradaic efficiency (>95%) and maintains over 90% across a wide potential window of 900 mV. Furthermore, it delivers an industrial-relevant partial current density of -317 mA cm-2 at -1.2 VRHE in a flow cell, while maintaining its selectivity. Additionally, it exhibits exceptional long-term stability, surpassing 120 h at -200 mA cm-2. Through experimental and theoretical mechanistic investigations, it has been determined that the introduction of tensile strain facilitates the adsorption of *CO2, thereby enhancing the reaction kinetics. Moreover, the presence of Cu dopants and tensile strain further diminishes the energy barrier for the formation of *OCHO intermediate. This study not only offers valuable insights for the development of effective catalysts for CO2RR through doping, but also establishes correlations between doping, lattice strains, and catalytic properties of bismuth catalysts.

16.
Small ; 20(12): e2307059, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946687

RESUMEN

The state-of-the-art iridium and ruthenium oxides-based materials are best known for high efficiency and stability in acidic oxygen evolution reaction (OER). However, the development of economically feasible catalysts for water-splitting technologies is challenging by the requirements of low overpotential, high stability, and resistance of catalysts to dissolution during the acidic oxygen evolution reaction . Herein, an organometallic core-shell heterostructure composed of a carbon nanotube core (CNT) and bismuth telluride (Bi2Te3) shell (denoted as nC-Bi2Te3) is designed and use it as a catalyst for the acidic OER. The proposed catalyst achieves an ultralow overpotential of 160 mV at 10 mA cm-2 (geometrical), thereby outperforming most of the state-of-the-art precious-metal-based catalysts. The low Tafel slope of 30 mV dec-1 and charge transfer resistance (RCT) of 1.5 Ω demonstrate its excellent electrocatalytic activity. The morphological and chemical compositions of nC-Bi2Te3 enable the generation of ─OH functional group in the Bi─Te sections formed via a ligand support, which enhances the absorption capacity of H+ ions and increases the intrinsic catalytic activity. The presented insights regarding the material composition-structure relationship can help expand the application scope of high-performance catalysts.

17.
Small ; 20(13): e2306697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963857

RESUMEN

Bismuth chalcogenides are used as cathode materials in Zn-proton hybrid ion batteries, which exhibit an ultraflat discharge plateau that is favorable for practical applications. Unfortunately, their capacity is not competitive, and their charge storage mechanisms are ambiguous, both of which hinder their further development. In this study, S-doped Bi2Te3- x (SBT) nanosheets are prepared by tellurizing a Bi2O2S precursor using a hydrothermal process. As revealed by density functional theory analyses, the S dopant and its induced Te vacancies can distinctly manipulate the electronic structure of SBT, resulting in decent electrical conductivity and more negative adsorption energy to Zn2+. These advantages boost the Zn2+ storage ability of SBT materials. Consequently, compared with defect-free Bi2Te3, the SBT cathodes have superior specific capacity, rate capability, and cycling stability.

18.
Small ; 20(15): e2307484, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38050936

RESUMEN

Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi9(C9H3O6)9(H2O)9] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.

19.
Small ; : e2400913, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847569

RESUMEN

Electrochemical carbon dioxide reduction reaction (ECO2RR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO2 levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi2O3) are develpoed by a solvothermal method. The resulting Ce@S-Bi2O3 electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.5% and a current density of 42.09 mA cm-2 at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi2O3. The density functional theory (DFT) results show that doping of Ce and S in Bi2O3 enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi2O3 that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO2RR.

20.
Small ; : e2401847, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092663

RESUMEN

Bismuth halide hybrid perovskites have emerged as promising alternatives to their lead halide homologs because of high chemical stability, low toxicity, and structural diversity. However, their advancements in optoelectronic field are plagued with poor charge transport, due to considerable microstrain triggered by bulky spacer. Herein, the di-tertiary ammonium spacer (N,N,N',N'-tetramethyl-1,4-butanediammonium, TMBD) is explored to direct stable 1D bismuth bromide lattice structure with relaxed microstrain. Compared to the primary pentamethylenediamine (PD)2+, the (TMBD)2+ adopting alternating alignment enables a unique H-bonds mode to distort the configuration of inorganic layers to form corner-sharing [BiBr5] near-regular chains with narrower bandgap, lower exciton binding energy, and reduced carrier-lattice interactions, thereby facilitating charge-carrier transport. Moreover, the (TMBD)2+ spacers largely suppress ion migration in perovskite lattice, as substantiated by the experimental and theoretical investigations. Consequently, (TMBD)BiBr5 single crystal photodetector delivers a 185-fold increase in current on/off ratio with respect to (PD)BiBr5 under white light irradiation, considerable responsivity (≈82.97 mA W-1), detectivity (≈8.06 ×1011 Jones) under weak light (0.02 mW cm-2) irradiation, in the top rank of the reported hybrid bismuth halide perovskites. This finding offers novel design criterion for high-performance lead-free perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA