RESUMEN
As an essential component of immunity, macrophages have key roles in mammalian host defense, tissue homeostasis, and repair, as well as in disease pathogenesis and pathophysiology. A source of fascination and extensive research, in this Opinion we challenge the utility of the M1-M2 paradigm, and discuss the importance of accurate characterization of human macrophages. We comment on the application of single cell analytics to define macrophage subpopulations and how this could advance therapeutic options. We argue that human macrophage cell therapy can be used to alleviate many diseases, and offer a viewpoint on the knowledge gaps that must be filled to render such a therapeutic approach a reality and, ideally, a common future practice in precision medicine.
Asunto(s)
Factores Inmunológicos , Inmunoterapia , Animales , Humanos , Macrófagos , Medicina de Precisión , Recuento de Leucocitos , MamíferosRESUMEN
Immunotherapy has improved cancer treatment based on investigations of tumor immune escape. Manipulation of the immune system stimulates antitumor immune responses and blocks tumor immune escape routes. Genetically adoptive cell therapy, such as T cells, has yielded promising results for hematologic malignancies, but their application to solid tumors has been challenging. Macrophages have a wide broad of capabilities in regulating immune responses, homeostasis, and tissue development, as well as the ability to phagocyte, present antigens, and infiltrate the tumor microenvironment (TME). Given the importance of macrophages in cancer development, they could serve as novel tool for tumor treatment. Therefore, macrophages are used in different formats for direct and indirect targeting of tumor cells. This review summarized the available data on the various applications of macrophages in cancer immunotherapy.
Asunto(s)
Inmunoterapia , Macrófagos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Macrófagos/inmunología , Animales , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Escape del Tumor/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismoRESUMEN
The removal of dying cells, or efferocytosis, is an indispensable part of resolving inflammation. However, the inflammatory microenvironment of the atherosclerotic plaque frequently affects the biology of both apoptotic cells and resident phagocytes, rendering efferocytosis dysfunctional. To overcome this problem, a chimeric antigen receptor (CAR) macrophage that can target and engulf phagocytosis-resistant apoptotic cells expressing CD47 is developed. In both normal and inflammatory circumstances, CAR macrophages exhibit activity equivalent to antibody blockage. The surface of CAR macrophages is modified with reactive oxygen species (ROS)-responsive therapeutic nanoparticles targeting the liver X receptor pathway to improve their cell effector activities. The combination of CAR and nanoparticle engineering activated lipid efflux pumps enhances cell debris clearance and reduces inflammation. It is further suggested that the undifferentiated CAR-Ms can transmigrate within a mico-fabricated vessel system. It is also shown that our CAR macrophage can act as a chimeric switch receptor (CSR) to withstand the immunosuppressive inflammatory environment. The developed platform has the potential to contribute to the advancement of next-generation cardiovascular disease therapies and further studies include in vivo experiments.
Asunto(s)
Eferocitosis , Receptores X del Hígado , Macrófagos , Especies Reactivas de Oxígeno , Receptores Quiméricos de Antígenos , Transducción de Señal , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Antígeno CD47/metabolismo , Liposomas , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Receptores Quiméricos de Antígenos/metabolismoRESUMEN
Macrophages are central to the immune system and are found in nearly all tissues. Recently, the development of therapies based on macrophages has attracted significant interest. These therapies utilize macrophages' key roles in immunity, their ability to navigate biological barriers, and their tendency to accumulate in tumors. This review explores the advancement of macrophage-based treatments. We discuss the bioengineering of macrophages for improved anti-tumor effects, the use of CAR macrophage therapy for targeting cancer cells, and macrophages as vehicles for therapeutic delivery. Additionally, we examine engineered macrophage products, like extracellular vesicles and membrane-coated nanoparticles, for their potential in precise and less toxic tumor therapy. Challenges in moving these therapies from research to clinical practice are also highlighted. The aim is to succinctly summarize the current status, challenges, and future directions of engineered macrophages in cancer therapy.
Asunto(s)
Macrófagos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas , Sistemas de Liberación de Medicamentos/métodos , Bioingeniería/métodosRESUMEN
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/inmunología , Macrófagos/inmunología , Fibrosis , Medicina de Precisión/métodosRESUMEN
Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.
RESUMEN
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
RESUMEN
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Receptores de Antígenos de Linfocitos T , InmunoterapiaRESUMEN
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Asunto(s)
Nanomedicina , Neoplasias , Citofagocitosis , Humanos , Inmunoterapia , Macrófagos , FagocitosisRESUMEN
Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
RESUMEN
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/efectos adversos , Macrófagos , Neoplasias/terapia , Linfocitos T , Estados UnidosRESUMEN
Chimeric antigen receptor-T (CAR-T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell-manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR-T cell infiltration to solid tumors and inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR-M1 macrophages displaying enhanced cancer-directed phagocytosis and anti-tumor activity. In vivo injected nanocomplexes of macrophage-targeting nanocarriers and CAR-interferon-γ-encoding plasmid DNA induce CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis, anti-tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off-the-shelf CAR-macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR-cell manufacturing.
Asunto(s)
Receptores Quiméricos de AntígenosRESUMEN
Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.