Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immun Ageing ; 21(1): 42, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918830

RESUMEN

BACKGROUND: Neutrophils play an essential role in Alzheimer's disease (AD) pathology. However, the extent of their heterogeneity remains poorly explored, particularly in the context of developing novel therapies targeting these cells. RESULTS: We investigate the population structure of neutrophils purified from peripheral blood samples of AD mice. Utilizing single cell RNA sequencing, we comprehensively map neutrophil populations into six distinct clusters and find that the Neu-5 subset is specially enriched in AD mice. This subset exhibits fewer specific granules and a lower mature score. Gene ontology (GO) analysis reveals that genes involved in cytokine-mediated signaling are downregulated in the Neu-5 cluster. Furthermore, we identify the Ccrl2 gene is specifically upregulated in this subgroup, which is confirmed by flow cytometry in AD mice. Finally, immunohistochemical staining indicates that CCRL2 protein is increased in the brains of AD mice. CONCLUSIONS: We identify a unique CCRL2 positive neutrophil cluster, that is specifically enriched in the peripheral blood of AD mice.

2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846258

RESUMEN

Macrophages are the key regulator of T-cell responses depending on their activation state. C-C motif chemokine receptor-like 2 (CCRL2), a nonsignaling atypical receptor originally cloned from LPS-activated macrophages, has recently been shown to regulate immune responses under several inflammatory conditions. However, whether CCRL2 influences macrophage function and regulates tumor immunity remains unknown. Here, we found that tumoral CCRL2 expression is a predictive indicator of robust antitumor T-cell responses in human cancers. CCRL2 is selectively expressed in tumor-associated macrophages (TAM) with immunostimulatory phenotype in humans and mice. Conditioned media from tumor cells could induce CCRL2 expression in macrophages primarily via TLR4, which is negated by immunosuppressive factors. Ccrl2-/- mice exhibit accelerated melanoma growth and impaired antitumor immunity characterized by significant reductions in immunostimulatory macrophages and T-cell responses in tumor. Depletion of CD8+ T cells or macrophages eliminates the difference in tumor growth between WT and Ccrl2-/- mice. Moreover, CCRL2 deficiency impairs immunogenic activation of macrophages, resulting in attenuated antitumor T-cell responses and aggravated tumor growth in a coinjection tumor model. Mechanically, CCRL2 interacts with TLR4 on the cell surface to retain membrane TLR4 expression and further enhance its downstream Myd88-NF-κB inflammatory signaling in macrophages. Similarly, Tlr4-/- mice exhibit reduced CCRL2 expression in TAM and accelerated melanoma growth. Collectively, our study reveals a functional role of CCRL2 in activating immunostimulatory macrophages, thereby potentiating antitumor T-cell response and tumor rejection, and suggests CCLR2 as a potential biomarker candidate and therapeutic target for cancer immunotherapy.


Asunto(s)
Activación de Macrófagos/inmunología , Neoplasias/inmunología , Receptores CCR/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , China , Femenino , Inmunización , Activación de Macrófagos/fisiología , Masculino , Melanoma/metabolismo , Ratones , FN-kappa B/metabolismo , Neoplasias/genética , Receptores CCR/genética , Transducción de Señal , Linfocitos T/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
3.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33253374

RESUMEN

INTRODUCTION: Most of the typical chemokine receptors (CKRs) have been identified as coreceptors for a variety of human and simian immunodeficiency viruses (HIVs and SIVs). This study evaluated CCRL2 to examine if it was an HIV/SIV coreceptor. METHODS: The Human glioma cell line, NP-2, is normally resistant to infection by HIV and SIV. The cell was transduced with amplified cluster of differentiation 4 (CD4) as a receptor and CCR5, CXCR4 and CCRL2 as coreceptor candidates to produce NP-2/CD4/coreceptor cells (). The cells were infected with multiplicity of infection (MOI) 1.0. Infected cells were detected by indirect immunofluorescence assay (IFA). Multinucleated giant cells (MGC) in syncytia were quantified by Giemsa staining. Proviral DNA was detected by polymerase chain reaction (PCR), and reverse transcriptase (RT) activity was measured. RESULTS: IFA detected viral antigens of the primary isolates, HIV-1HAN2 and HIV-2MIR in infected NP-2/CD4/CCRL2 cells, indicated CCRL2 as a functional coreceptor. IFA results were confirmed by the detection of proviral DNA and measurement of RT-activity in the spent cell supernatants. Additionally, MGC was detected in HIV-2MIR-infected NP-2/CD4/CCCRL2 cells. HIV-2MIR were found more potent users of CCRL2 than HIV-1HAN2. Moreover, GWAS studies, gene ontology and cell signaling pathways of the HIV-associated genes show interaction of CCRL2 with HIV/SIV envelope protein. CONCLUSIONS: In vitro experiments showed CCRL2 to function as a newly identified coreceptor for primary HIV-2 isolates conveniently. The findings contribute additional insights into HIV/SIV transmission and pathogenesis. However, its in vivo relevance still needs to be evaluated. Confirming in vivo relevance, ligands of CCRL2 can be investigated as potential targets for HIV entry-inhibitor drugs.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-2/metabolismo , Receptores CCR/metabolismo , Infecciones por VIH/genética , VIH-1/genética , VIH-1/metabolismo , VIH-2/genética , Humanos , Células Jurkat , Receptores CCR/genética
4.
Proteins ; 90(9): 1714-1720, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35437825

RESUMEN

Chemokine (C-C motif) receptor-like 2 (CCRL2), is a seven transmembrane receptor closely related to the chemokine receptors CCR1, CCR2, CCR3, and CCR5. Nevertheless, CCRL2 is unable to activate conventional G-protein dependent signaling and to induce cell directional migration. The only commonly accepted CCRL2 ligand is the nonchemokine chemotactic protein chemerin (RARRES2). The chemerin binding to CCLR2 does induce leukocyte chemotaxis, yet, genetic targeting of CCRL2 was shown to modulate the inflammatory response in different experimental models. This mechanism was shown to be crucial for lung dendritic cell migration, neutrophil recruitment, and Natural Killer cell-dependent immune surveillance in lung cancer. To gain more insight in the interactions involved in the CCRL2-chemerin, the binding complexes were generated by protein-protein docking, then submitted to accelerated molecular dynamics. The obtained trajectories were inspected by principal component analyses followed by kernel density estimation to identify the ligand-receptor regions most frequently involved in the binding. To conclude, the reported analyses led to the identification of the putative hot-spot residues involved in CCRL2-chemerin binding.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Simulación de Dinámica Molecular , Quimiocinas/genética , Quimiocinas/metabolismo , Ligandos , Receptores CCR/genética , Receptores CCR/metabolismo
5.
J Infect Dis ; 224(5): 870-880, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373444

RESUMEN

BACKGROUND: We identified host single-nucleotide variants (SNVs) associated with neurocognitive impairment (NCI) in perinatally HIV-infected (PHIV) children. METHODS: Whole-exome sequencing (WES) was performed on 217 PHIV with cognitive score for age (CSA) < 70 and 247 CSA ≥ 70 (discovery cohort [DC]). SNVs identified in DC were evaluated in 2 validation cohorts (VC). Logistic regression was used to estimate adjusted odds ratios (ORs) for NCI. A human microglia NLRP3 inflammasome assay characterized the role of identified genes. RESULTS: Twenty-nine SNVs in 24 genes reaching P ≤ .002 and OR ≥ 1.5 comparing CSA < 70 to CSA ≥ 70 were identified in the DC, of which 3 SNVs were identified in VCs for further study. Combining the 3 cohorts, SNV in CCRL2 (rs3204849) was associated with decreased odds of NCI (P < .0001); RETREG1/FAM134B (rs61733811) and YWHAH (rs73884247) were associated with increased risk of NCI (P < .0001 and P < .001, respectively). Knockdown of CCRL2 led to decreased microglial release of IL-1ß following exposure to ssRNA40 while knockdown of RETREG1 and YWHAH resulted in increased IL-1ß release. CONCLUSIONS: Using WES and 2 VCs, and gene silencing of microglia we identified 3 genetic variants associated with NCI and inflammation in HIV-infected children.


Asunto(s)
Infecciones por VIH/complicaciones , VIH-1 , Transmisión Vertical de Enfermedad Infecciosa , Inflamación/genética , Trastornos Neurocognitivos/genética , Proteínas 14-3-3 , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Infecciones por VIH/psicología , Infecciones por VIH/transmisión , Humanos , Lactante , Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Masculino , Proteínas de la Membrana , Microglía , Trastornos Neurocognitivos/diagnóstico , Trastornos Neurocognitivos/virología , Receptores CCR
6.
J Neuroinflammation ; 16(1): 226, 2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31733653

RESUMEN

BACKGROUND: Chemerin is highly expressed in the serum, placenta tissue, and umbilical cord blood of diabetic mother; however, the impact of chemerin on cognitive disorders of offspring from mothers with diabetes in pregnancy remains unclear. METHODS: A diabetic phenotype in pregnant mice dams was induced by streptozocin (STZ) injection or intraperitoneal injection of chemerin. Behavioral changes in offspring of diabetic dams and nondiabetic controls were assessed, and changes in chemerin, two receptors of chemerin [chemerin receptor 23 (ChemR23) and chemokine (C-C motif) receptor-like 2 (CCRL2)], macrophages, and neurons in the brain tissue were studied to reveal the underlying mechanism of the behavioral changes. RESULTS: Chemerin treatment mimicked the STZ-induced symptom of maternal diabetes in mice along with the altered behavior of offspring in the open field test (OFT) assay. In the exploring process for potential mechanism, the brain tissues of offspring from chemerin-treated dams were observed with an increase level of macrophage infiltration and a decrease number of neuron cells. Moreover, an increased level of NOD-like receptor family pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like (Asc) protein as well as pyroptosis [characterized by increased active caspase-1 content and secretion of cytokines such as interleukin (IL) 1 beta (IL-1ß) and IL-18] more activated in macrophages is also observed in the brain of these diabetic dam's offspring, in the presence of ChemR23. In vitro, it was found that pyroptosis activation was increased in macrophages separated from the abdominal cavity of normal mice, after chemerin treatment. However, depletion of CCRL2 decreased the level of chemerin in the brain tissues of diabetic dams' offspring; depletion of ChemR23 decreased macrophage pyroptosis, and depletion of either receptor reversed chemerin-mediated neurodevelopmental deficits and cognitive impairment of offspring of diabetic pregnant dams. CONCLUSIONS: Chemerin induced diabetic pregnant disease and CCRL2 were required to enrich chemerin in the brain of offspring. Aggregation of chemerin could lead to macrophage recruitment, activation of pyroptosis, the release of inflammatory cytokines, a decrease in the number of neurons, and cognitive impairment in offspring in a ChemR23-dependent manner. Targeting CCRL2 and/or ChemR23 could be useful for treating neuropsychological deficits in offspring of dams with diabetes in pregnancy.


Asunto(s)
Encéfalo/patología , Quimiocinas/farmacología , Trastornos del Conocimiento/etiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Macrófagos/patología , Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo/metabolismo , Quimiocinas/metabolismo , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Diabetes Mellitus Experimental , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Piroptosis/fisiología , Receptores CCR/metabolismo
7.
Odontology ; 106(1): 29-36, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28233070

RESUMEN

Chemerin is a chemoattractant protein that directs inflammatory cells that express its receptor chemokine receptor-like 1 (ChemR23) towards sites of inflammation. C-C chemokine receptor-like 2 (CCRL2), is the other receptor of chemerin, improves the interaction between chemerin and ChemR23. The aim of this study was to evaluate the expression of chemerin and its receptors in gingival tissues with healthy and periodontitis. Tissue biopsy samples were obtained from 20 patients with chronic periodontitis and from the gingiva of 20 healthy individuals undergoing a crown lengthening process. Quantitative real-time PCR (qPCR) was used to examine the mRNA expression of chemerin, ChemR23 and CCRL2. Additionally, protein expression was measured by immunohistochemistry. Both qPCR and immunohistochemistry results revealed that the expression of chemerin and ChemR23 was significantly higher in tissues with periodontitis than in healthy tissues (P = 0.001 and, P = 0.015, respectively). There were no significant differences between healthy tissues and those with periodontitis in terms of mRNA expression of CCRL2, whereas a more intense staining was observed in tissues with periodontitis. The mRNA expression levels of chemerin showed a positive correlation with plaque index, gingival index, probing pocket depth and clinical attachment level (r = 0.448, r = 0.460, r = 0.439 and, r = 0.459, respectively, P < 0.01). To the best of our knowledge, this study is the first to examine the expression of chemerin, ChemR23 and CCRL2 in gingival tissues. Our study suggests that chemerin may play a role in the pathogenesis of periodontitis by causing chemoattraction of immune cells that direct ChemR23 receptors to the site of inflammation.


Asunto(s)
Quimiocinas/metabolismo , Periodontitis Crónica/metabolismo , Encía/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores CCR/metabolismo , Receptores de Quimiocina/metabolismo , Adulto , Índice de Placa Dental , Femenino , Humanos , Inmunohistoquímica , Masculino , Índice Periodontal , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Bone Miner Res ; 39(5): 611-626, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477792

RESUMEN

The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. The mechanisms regulating the osteogenic capacity of jawbone-derived stromal cells in the periodontitis microenvironment remain elusive. Leptin receptor (LepR) expressing stromal cells, which largely overlap with Cxcl12-abundant reticular (CAR) cells in bone tissue, rapidly proliferate and differentiate into bone-forming cells during extraction socket healing to support alveolar bone repair. In this study, we identify that CCRL2 is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. The Ccrl2-KO mice exhibit significant improvements in bone healing in extraction sockets with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on Wnt signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in extraction sockets with periodontitis. Together, we clarify that the CCRL2 receptor of LepR+/CAR cells can respond to periodontitis and crosstalk with Wnt signaling to deteriorate extraction socket healing.


The impaired bone healing in tooth extraction sockets due to periodontitis presents a major obstacle to restoring oral health. Alterations in the cellular activity of LepR+/CAR cells, an essential stromal cell population for extraction socket healing, in the periodontitis microenvironment have yet to be determined. In this study, we identify that CCRL2, as a potent agent of inflammation-bone crosstalk, is significantly expressed and inhibits osteogenesis in LepR+/CAR cells of alveolar bones with periodontitis. Specifically, the binding of CCRL2 to SFRP1 on the surface of LepR+/CAR cells can amplify the suppressive effect of SFRP1 on the Wnt/ß-catenin signaling under inflammation, thus hindering the osteogenic differentiation of LepR+/CAR cells and resulting in poor bone healing in tooth extraction sockets with periodontitis.


Asunto(s)
Osteogénesis , Periodontitis , Receptores de Leptina , Vía de Señalización Wnt , Animales , Periodontitis/metabolismo , Periodontitis/patología , Receptores de Leptina/metabolismo , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Ratones , Ratones Noqueados , Células del Estroma/metabolismo , Células del Estroma/patología , Masculino , Humanos , Proceso Alveolar/patología , Proceso Alveolar/metabolismo , Cicatrización de Heridas , Proteínas de la Membrana/metabolismo
9.
Life Sci ; 329: 121910, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406766

RESUMEN

BACKGROUND: Moxibustion is an important external therapy of traditional medicine that operates on some acupoints on the skin and is usually used for immune-related diseases. However, whether the immune function of the skin, especially the immune-related lncRNAs, contributes to the mechanism of moxibustion remains unclear. METHODS: Adjuvant arthritis (AA) was induced by injection of Complete Freund's adjuvant (CFA) into the right hind paw of mice. Moxibustion was administered on the Zusanli (ST36) acupoint for 3 weeks. The alteration of foot volume and cytokine concentration in serum was used to evaluate the anti-inflammation effect of moxibustion. CD83 expression in the local skin of ST36 was measured by immunofluorescence staining. Transcriptome RNA sequencing (RNA-seq) and lncRNA-mRNA network analysis were performed to construct a moxibustion-induced Immune-related lncRNA-mRNA co-expression network. qRT-PCR was used to validate the RNA-seq data. RESULTS: Moxibustion at ST36 relieved the foot swelling, decreased the TNF-α and IL-1ß concentrations in serum, and obviously increased the CD83 expression at the local skin of ST36. A total of 548 differentially expressed lncRNAs and 520 linked mRNAs were screened out. The significantly and predominately enriched Go term was inflammatory and immune response, and the main pathways related to inflammatory and immune responses include Toll-like receptor, cytokine-cytokine receptor, and MAPK signaling. The immune-related lncRNA-mRNA co-expression network showed 88 lncRNAs and 36 mRNAs, and Ccrl2 is the central hub of this network. CONCLUSION: Local immune activation is significantly triggered by moxibustion in ST36 of AA mice. The Ccrl2-centered immune-related lncRNA-mRNA co-expression network would be a promising target for decoding the mechanism of moxibustion for immune-related diseases.


Asunto(s)
Artritis Experimental , Moxibustión , ARN Largo no Codificante , Ratones , Animales , Artritis Experimental/genética , Artritis Experimental/terapia , ARN Largo no Codificante/genética , Piel , ARN Mensajero/genética , Receptores CCR
10.
Cardiovasc Res ; 119(9): 1811-1824, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37279540

RESUMEN

AIMS: Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS: By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate ß2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with ß2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS: Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-ß2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.


Asunto(s)
Aterosclerosis , Antígenos CD18 , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Antígenos CD18/metabolismo , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Noqueados para ApoE , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo
11.
Front Immunol ; 13: 931408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958581

RESUMEN

Oral ulcers are one of the most common inflammatory diseases on oral mucosa that have obvious impacts on patients. Studies have shown that N6-methyladenosine (m6A) RNA transcription modification may be involved in the development of various inflammatory responses, and whether the pathogenesis of oral ulcers is related to m6A is unclear. This study aims to identify how m6A-related single nucleotide polymorphisms (m6A-SNPs) may affect oral ulcers. The UKBB dataset containing 10,599,054 SNPs was obtained from the GWAS database using the keyword "oral ulcer" and compared with the M6AVar database containing 13,703 m6A-SNPs.With 7,490 m6A-SNPs associated with oral ulcers identified, HaploReg and RegulomeDB were used for further functional validation and differential gene analysis was performed using the GEO database dataset GSE37265. A total of 7490 m6A-SNPs were detected in this study, 11 of which were related to oral ulcers (p<5E-08), and all of these SNPs showed eQTL signals. The SNP rs11266744 (p=2.00E-27) may regulate the expression of the local gene CCRL2, thereby participating in the pathogenesis of oral ulcers. In summary, by analyzing genome-wide association studies, this study showed that m6A modification may be involved in the pathogenesis of oral ulcers and CCRL2 may be the targeted gene.


Asunto(s)
Úlceras Bucales , Polimorfismo de Nucleótido Simple , Adenosina/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Úlceras Bucales/genética , Úlcera
12.
Genes Dis ; 9(2): 429-442, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35224158

RESUMEN

Obesity-induced inflammation, characterized by augmented infiltration and altered balance of macrophages, is a critical component of systemic insulin resistance. Chemokine-chemokine receptor system plays a vital role in the macrophages accumulation. CC-Chemokine Receptor-like 2 (Ccrl2) is one of the receptors of Chemerin, which is a member of atypical chemokine receptors (ACKR) family, reported taking part in host immune responses and inflammation-related conditions. In our study, we found ccrl2 expression significantly elevated in visceral adipose tissue (VAT) of high fat diet (HFD) induced obese mice and ob/ob mice. Systemic deletion of Ccrl2 gene aggravated HFD induced obesity and insulin resistance and ccrl2 -/- mice showed aggravated VAT inflammation and increased M1/M2 macrophages ratio, which is due to the increase of macrophages chemotaxis in Ccrl2 deficiency mice. Cumulatively, these results indicate that Ccrl2 has a critical function in obesity and obesity-induced insulin resistance via mediating macrophages chemotaxis.

13.
Front Cell Dev Biol ; 9: 808455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004698

RESUMEN

Chemerin is a multifunctional protein involved in the regulation of inflammation, metabolism, and tumorigenesis. It binds to three receptors, CMKLR1, GPR1 and CCRL2. CMKLR1 is a fully functional receptor mediating most of the known activities of chemerin. CCRL2 does not seem to couple to any intracellular signaling pathway and is presently considered as an atypical receptor able to present the protein to cells expressing CMKLR1. CCRL2 is expressed by many cell types including leukocyte subsets and endothelial cells, and its expression is strongly upregulated by inflammatory stimuli. We recently reported that chemerin can negatively regulate the angiogenesis process, including during the development of the vascular network in mouse retina. The role of CCRL2 in angiogenesis was unexplored so far. In the present work, we demonstrate that mice lacking CCRL2 exhibit a lower density of vessels in the developing retina and this phenotype persists in adulthood, in a CMKLR1-dependent manner. Vascular sprouting was not affected, while vessel pruning, and endothelial cell apoptosis were increased. Pathological angiogenesis was also reduced in CCRL2-/- mice in a model of oxygen-induced retinopathy. The phenotype closely mimics that of mice overexpressing chemerin, and the concentration of chemerin was found elevated in the blood of newborn mice, when the retinal vasculature develops. CCRL2 appears therefore to regulate the distribution and concentration of chemerin in organs, regulating thereby its bioactivity.

14.
Theriogenology ; 157: 181-198, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32814246

RESUMEN

Studies on adipokines, substances that are produced in adipose tissue, indicate that they influence both metabolism and reproduction. Chemerin is a novel addition to the adipokine family. It is believed that chemerin receptors are expressed in different structures of the hypothalamic-pituitary-gonadal (HPG) axis, which are crucial for endocrine control of reproductive functions, including the pituitary. The aim of this study was to investigate the expression of chemerin receptors (CMKLR1, GPR1, CCRL2) genes and proteins in the porcine pituitary. The effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways was also investigated. The anterior (AP) and posterior (PP) lobes of the pituitary were examined on days 2 to 3, 10 to 12, 14 to 16, and 17 to 19 of the oestrous cycle and on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy. This is the first study to demonstrate that CMKLR1, GPR1 and CCRL2 are expressed in the porcine AP and PP, which implies that this gland is sensitive to chemerin action. The expression of the studied chemerin receptors fluctuated during different phases of the cycle and early gestation, which could be related to changes in the endocrine status of female pigs. The study also revealed that CMKLR1 and CCRL2 proteins were present in gonadotrophs and thyrotrophs, whereas CCRL2 was also present in somatotrophs, during the cycle and early pregnancy. We observed that chemerin affected MAPK/Erk1/2, Akt and AMPK signalling pathways in the porcine AP. These results suggest that chemerin may participate in the regulation of reproductive functions at the level of the pituitary.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ciclo Estral , Proteínas Proto-Oncogénicas c-akt , Animales , Quimiocinas/genética , Ciclo Estral/genética , Femenino , Embarazo , Transducción de Señal , Porcinos
15.
Front Immunol ; 9: 2772, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555465

RESUMEN

Chemerin [RARRES2 [retinoic acid receptor responder 2], TIG2 [tazarotene induced gene 2 (TIG2)]] is a multifunctional cytokine initially described in skin cultures upon exposure to the synthetic retinoid tazarotene. Its secreted pro-form, prochemerin, is widely expressed, found systemically, and is readily converted into active chemerin by various proteases. Subsequent studies elucidated major roles of chemerin as both a leukocyte chemoattractant as well as an adipokine. Chemerin's main chemotactic receptor, the G-protein coupled receptor CMKLR1, is expressed on macrophages, dendritic, and NK cells. With respect to its role in immunology, chemerin mediates trafficking of these cells to sites of inflammation along its concentration gradient, and likely helps coordinate early responses, as it has been shown to have antimicrobial and angiogenic properties, as well. Recently, there has been mounting evidence that chemerin is an important factor in various cancers. As with its role in immune responses-where it can act as both a pro- and anti-inflammatory mediator-the potential functions or correlations chemerin has in or with cancer appears to be context dependent. Most studies, however, suggest a downregulation or loss of chemerin/RARRES2 in malignancies compared to the normal tissue counterparts. Here, we perform a comprehensive review of the literature to date and summarize relevant findings in order to better define the roles of chemerin in the setting of the tumor microenvironment and tumor immune responses, with an ultimate focus on the potential for therapeutic intervention.


Asunto(s)
Quimiocinas/inmunología , Regulación hacia Abajo/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Animales , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Macrófagos/inmunología , Macrófagos/patología , Neoplasias/patología , Receptores de Quimiocina/inmunología
16.
Physiol Rep ; 6(24): e13962, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30588761

RESUMEN

Chemerin acts as a chemotactic factor for leukocyte populations expressing the G protein-coupled receptor CMKLR1 (ChemR23). It is also an adipocytokine involved in obesity and metabolic syndromes. Previous studies have demonstrated that chemerin promotes angiogenesis in vitro, although the precise mechanism has not been elucidated. In this study, we have investigated whether chemerin regulates angiogenic processes and validated the associated mechanisms. In this study, chemerin stimulated angiogenesis in mice, which was demonstrated using Matrigel plug implantation assay, mouse corneal models of angiogenesis, and ex vivo rat aortic ring assay. To explore the mechanisms by which chemerin induced angiogenesis, we examined the effects of chemerin in human umbilical vein endothelium cells (HUVECs). Chemerin stimulated the differentiation of HUVECs into capillary-like structures, promoted the proliferation of HUVECs, and functioned as a chemoattractant in migration assays. Chemerin induced the phosphorylation of Akt and p42/44 extracellular signal-regulated kinase (ERK) in HUVECs and chemerin promotes angiogenesis via Akt and ERK. SiRNA against the chemerin receptor CMKLR1 but not that against another chemerin receptor, CCRL2, completely inhibited the chemerin-induced migration and angiogenesis of HUVECs, which indicates that chemerin promotes the migration and angiogenic activities of HUVECs mainly through CMKLR1.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Quimiocinas/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Neovascularización Fisiológica , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Quimiocina/metabolismo
17.
Front Aging Neurosci ; 9: 148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603493

RESUMEN

Inflammatory reactions occurring in the central nervous system (CNS), known as neuroinflammation, are key components of the pathogenic mechanisms underlying several neurological diseases. The chemokine system plays a crucial role in the recruitment and activation of immune and non-immune cells in the brain, as well as in the regulation of microglia phenotype and function. Chemokines belong to a heterogeneous family of chemotactic agonists that signal through the interaction with G protein-coupled receptors (GPCRs). Recently, a small subset of chemokine receptors, now identified as "atypical chemokine receptors" (ACKRs), has been described. These receptors lack classic GPCR signaling and chemotactic activity and are believed to limit inflammation through their ability to scavenge chemokines at the inflammatory sites. Recent studies have highlighted a role for ACKRs in neuroinflammation. However, in the CNS, the role of ACKRs seems to be more complex than the simple control of inflammation. For instance, CXCR7/ACKR3 was shown to control T cell trafficking through the regulation of CXCL12 internalization at CNS endothelial barriers. Furthermore, D6/ACKR2 KO mice were protected in a model of experimental autoimmune encephalomyelitis (EAE). D6/ACKR2 KO showed an abnormal accumulation of dendritic cells at the immunization and a subsequent impairment in T cell priming. Finally, CCRL2, an ACKR-related protein, was shown to play a role in the control of the resolution phase of EAE. Indeed, CCRL2 KO mice showed exacerbated, non-resolving disease with protracted inflammation and increased demyelination. This phenotype was associated with increased microglia and macrophage activation markers and imbalanced M1 vs. M2 polarization. This review will summarize the current knowledge on the role of the ACKRs in neuroinflammation with a particular attention to their role in microglial polarization and function.

18.
Front Immunol ; 8: 1621, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209334

RESUMEN

Chemerin is a chemotactic protein that induces migration of several immune cells including macrophages, immature dendritic cells, and NK cells. Chemerin binds to three G protein-coupled receptors (GPCRs), including CCRL2. The exact function of CCRL2 remains unclear. CCRL2 expression is rapidly upregulated during inflammation, but it lacks the intracellular DRYLAIV motif required for classical GPCR downstream signalling pathways, and it has not been reported to internalise chemerin upon binding. The aim of this study was to investigate what role if any CCRL2 plays during acute inflammation. Using the zymosan- and thioglycollate-induced murine models of acute inflammation, we report that mice deficient in the Ccrl2 gene display exaggerated local and systemic inflammatory responses, characterised by increased myeloid cell recruitment. This amplified myeloid cell recruitment was associated with increased chemerin and CXCL1 levels. Furthermore, we report that the inflammatory phenotype observed in these mice is dependent upon elevated levels of endogenous chemerin. Antibody neutralisation of chemerin activity in Ccrl2-/- mice abrogated the amplified inflammatory responses. Importantly, chemerin did not directly recruit myeloid cells but rather increased the production of other chemotactic proteins such as CXCL1. Administration of recombinant chemerin to wild-type mice before inflammatory challenge recapitulated the increased myeloid cell recruitment and inflammatory mediator production observed in Ccrl2-/- mice. We have demonstrated that the absence of CCRL2 results in increased levels of local and systemic chemerin levels and exacerbated inflammatory responses during acute inflammatory challenge. These results further highlight the importance of chemerin as a therapeutic target in inflammatory diseases.

19.
Oncotarget ; 7(50): 83554-83569, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27907906

RESUMEN

Aging is associated with a rising incidence of cutaneous squamous cell carcinoma (cSCC), an aggressive skin cancer with the potential for local invasion and metastasis. Acquisition of a senescence-associated secretory phenotype (SASP) in dermal fibroblasts has been postulated to promote skin cancer progression in elderly individuals. The underlying molecular mechanisms are largely unexplored. We show that Chemerin, a previously unreported SASP factor released from senescent human dermal fibroblasts, promotes cSCC cell migration, a key feature driving tumor progression. Whereas the Chemerin abundance is downregulated in malignant cSCC cells, increased Chemerin transcripts and protein concentrations are detected in replicative senescent fibroblasts in vitro and in the fibroblast of skin sections from old donors, indicating that a Chemerin gradient is built up in the dermis of elderly. Using Transwell® migration assays, we show that Chemerin enhances the chemotaxis of different cSCC cell lines. Notably, the Chemerin receptor CCRL2 is remarkably upregulated in cSCC cell lines and human patient biopsies. Silencing Chemerin in senescent fibroblasts or the CCRL2 and GPR1 receptors in the SCL-1 cSCC cell line abrogates the Chemerin-mediated chemotaxis. Chemerin triggers the MAPK cascade via JNK and ERK1 activation, whereby the inhibition impairs the SASP- or Chemerin-mediated cSCC cell migration.Taken together, we uncover a key role for Chemerin, as a major factor in the secretome of senescent fibroblasts, promoting cSCC cell migration and possibly progression, relaying its signals through CCRL2 and GPR1 receptors with subsequent MAPK activation. These findings might have implications for targeted therapeutic interventions in elderly patients.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Senescencia Celular , Quimiocinas/metabolismo , Quimiotaxis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Comunicación Paracrina , Neoplasias Cutáneas/metabolismo , Anciano de 80 o más Años , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Quimiocinas/genética , Técnicas de Cocultivo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica , Interferencia de ARN , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transfección
20.
Med Oncol ; 32(11): 254, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26487662

RESUMEN

The human chemokine receptor CCRL2 is a member of the atypical chemokine receptor family. CCRL2 is unable to couple with G-proteins and fails to induce classical chemokine signaling for the highly conserved DRYLAIV motif essential for signaling has been changed to QRYLVFL. We investigated whether CCRL2 is involved in the chemotaxis, invasion, and proliferation of human breast cancer cells. Firstly, expression of CCRL2 was determined in six breast cancer cell lines by real-time RT-PCR and Western blot. Then, we established stable cell lines overexpressing CCRL2 to explore the function of CCRL2 in chemotaxis and invasion by transwell assays, and the signaling downstream was further investigated. The effect of CCRL2 on proliferation was detected by colony formation assays and tumor xenograft study. We found that stable overexpression of CCRL2 in MDA-MB-231 and BT-549 cells attenuated the chemotaxis and invasion stimulated by its ligand CCL2. CCRL2 inhibits p38 MAPK (p38) phosphorylation and up-regulates the expression of E-cadherin. This effect was eliminated by the inhibitor of p38 MAPK. CCRL2 inhibited the growth of breast cancer cells in vitro and in vivo. Our results suggest that CCRL2 functions as a tumor suppressor in human breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxis/fisiología , Receptores CCR/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quimiocina CCL2/antagonistas & inhibidores , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Fosforilación/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA