Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810257

RESUMEN

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinasa CDC2/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica , Histonas/metabolismo , Interfase , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología
2.
J Cell Biochem ; 124(11): 1870-1885, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37943107

RESUMEN

Kinetochores are multi-protein assemblies present at the centromere of the human chromosome and play a crucial role in cellular mitosis. The CENP-T and CENP-W chains form a heterodimer, which is an integral part of the inner kinetochore, interacting with the linker DNA on one side and the outer kinetochore on the other. Additionally, the CENP-T-W dimer interacts with other regulatory proteins involved in forming inner kinetochores. The specific roles of different amino acids in the CENP-W at the protein-protein interaction (PPI) interface during the CENP-T-W dimer formation remain incompletely understood. Since cell division goes awry in diseases like cancer, this CENP-T-W partnership is a potential target for new drugs that could restore healthy cell division. We employed molecular docking, binding free energy calculations, and molecular dynamics (MD) simulations to investigate the disruptive effects of amino acids substitutions in the CENP-W chain on CENP-T-W dimer formation. By conducting a molecular docking study and analysing hydrogen bonding interactions, we identified key residues in CENP-W (ASN-46, ARG-53, LEU-83, SER-86, ARG-87, and GLY-88) for further investigation. Through site-directed mutagenesis and subsequent binding free energy calculations, we refined the selection of mutant. We chose four mutants (N46K, R53K, L83K, and R87E) of CENP-W to assess their comparative potential in forming CENP-T-W dimer. Our analysis from 250 ns long revealed that the substitution of LEU83 and ARG53 residues in CENP-W with the LYS significantly disrupts the formation of CENP-T-W dimer. In conclusion, LEU83 and ARG53 play a critical role in CENP-T and CENP-W dimerization which is ultimately required for cellular mitosis. Our findings not only deepen our understanding of cell division but also hint at exciting drug-target possibilities.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Simulación del Acoplamiento Molecular , Sustitución de Aminoácidos , Centrómero/metabolismo , Cinetocoros/metabolismo , Aminoácidos/genética
3.
J Cell Sci ; 133(3)2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31964702

RESUMEN

Oocyte meiotic maturation failure is one of the major causes for female infertility. Meiotic resumption (the G2/M transition) and progression through metaphase I (MI) are two critical stages of oocyte meiotic maturation. Here, we report that centromere protein T (CENP-T), an internal kinetochore protein, plays a critical role in meiotic resumption of mouse oocytes. Depletion of CENP-T by siRNA injection increased the CDH1 (also known as FZR1) level, resulting in increased activity of the anaphase-promoting complex (APC)-CDH1 complex, and further leading to decreased levels of the cyclin protein CCNB1, attenuated maturation-promoting factor (MPF) activity, and finally severely compromised meiotic resumption. The impaired meiotic resumption caused by CENP-T depletion could be rescued by overexpression of exogenous CCNB1 or knockdown of endogenous CDH1. Overexpression of exogenous CENP-T resulted in decreased CDH1 levels, which accelerated the progression of G2/M transition, and accelerated meiotic cell cycle progression after germinal vesicle breakdown (GVBD). Unexpectedly, spindle organization after GVBD was not affected by the overexpression, but the distribution of chromosomes was affected. Our findings reveal a novel role for CENP-T in regulating meiotic progression by acting through CDH1.


Asunto(s)
Anafase , Meiosis , Animales , Cadherinas , Ciclina B1/genética , Femenino , Mesotelina , Metafase , Ratones , Oocitos
4.
Proc Natl Acad Sci U S A ; 116(43): 21580-21591, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597736

RESUMEN

The chromosomal position of each centromere is determined epigenetically and is highly stable, whereas incremental cases have supported the occurrence of centromere repositioning on an evolutionary time scale (evolutionary new centromeres, ENCs), which is thought to be important in speciation. The mechanisms underlying the high stability of centromeres and its functional significance largely remain an enigma. Here, in the fission yeast Schizosaccharomyces pombe, we identify a feedback mechanism: The kinetochore, whose assembly is guided by the centromere, in turn, enforces centromere stability. Upon going through meiosis, specific inner kinetochore mutations induce centromere repositioning-inactivation of the original centromere and formation of a new centromere elsewhere-in 1 of the 3 chromosomes at random. Repositioned centromeres reside asymmetrically in the pericentromeric regions and cells carrying them are competent in mitosis and homozygotic meiosis. However, when cells carrying a repositioned centromere are crossed with those carrying the original centromere, the progeny suffer severe lethality due to defects in meiotic chromosome segregation. Thus, repositioned centromeres constitute a reproductive barrier that could initiate genetic divergence between 2 populations with mismatched centromeres, documenting a functional role of ENCs in speciation. Surprisingly, homozygotic repositioned centromeres tend to undergo meiosis in an inverted order-that is, sister chromatids segregate first, and homologous chromosomes separate second-whereas the original centromeres on other chromosomes in the same cell undergo meiosis in the canonical order, revealing hidden flexibility in the perceived rigid process of meiosis.


Asunto(s)
Centrómero/genética , Segregación Cromosómica/genética , Meiosis/fisiología , Mitosis/fisiología , Schizosaccharomyces/genética , Cinetocoros/metabolismo , Meiosis/genética , Mitosis/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
5.
J Biol Chem ; 294(3): 968-980, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30459232

RESUMEN

The centromere is an evolutionarily conserved eukaryotic protein machinery essential for precision segregation of the parental genome into two daughter cells during mitosis. Centromere protein A (CENP-A) organizes the functional centromere via a constitutive centromere-associated network composing the CENP-T complex. However, how CENP-T assembles onto the centromere remains elusive. Here we show that CENP-T binds directly to Holliday junction recognition protein (HJURP), an evolutionarily conserved chaperone involved in loading CENP-A. The binding interface of HJURP was mapped to the C terminus of CENP-T. Depletion of HJURP by CRISPR-elicited knockout minimized recruitment of CENP-T to the centromere, indicating the importance of HJURP in CEPN-T loading. Our immunofluorescence analyses indicate that HJURP recruits CENP-T to the centromere in S/G2 phase during the cell division cycle. Significantly, the HJURP binding-deficient mutant CENP-T6L failed to locate to the centromere. Importantly, CENP-T insufficiency resulted in chromosome misalignment, in particular chromosomes 15 and 18. Taken together, these data define a novel molecular mechanism underlying the assembly of CENP-T onto the centromere by a temporally regulated HJURP-CENP-T interaction.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G2/fisiología , Fase S/fisiología , Centrómero/genética , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos
6.
J Biol Chem ; 288(38): 27208-27219, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23926101

RESUMEN

The CENP-T·CENP-W complex is a recently identified inner centromere component that plays crucial roles in the formation of a functional kinetochore involved in cell division during mitosis. Using yeast two-hybrid screening, we identified an interaction between CENP-T and CSN5, the fifth component of the COP9 signalosome and a key modulator of the cell cycle and cancer. Co-immunoprecipitation revealed that CSN5 directly interacts with both CENP-T and CENP-W. Ectopically expressed CSN5 promoted the ubiquitin- and proteasome-dependent degradation of CENP-T·CENP-W. The formation of a CENP-T·CENP-W complex greatly enhanced the stabilities of the respective proteins, possibly by blocking CSN5-mediated degradation. Furthermore, dysregulation of CSN5 induced severe defects in the recruitment of CENP-T·CENP-W to the kinetochore during the prophase stage of mitosis. Thus, our results indicate that CSN5 regulates the stability of the inner kinetochore components CENP-T and CENP-W, providing the first direct link between CSN5 and the mitotic apparatus, highlighting the role of CSN5 as a multifunctional cell cycle regulator.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptido Hidrolasas/metabolismo , Profase/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Complejo del Señalosoma COP9 , Proteínas Cromosómicas no Histona/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Ubiquitina/metabolismo
7.
J Mol Cell Biol ; 16(2)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38200711

RESUMEN

Accurate chromosome segregation in mitosis depends on kinetochores that connect centromeric chromatin to spindle microtubules. Centromeres are captured by individual microtubules via a kinetochore constitutive centromere-associated network (CCAN) during chromosome segregation. CCAN contains 16 subunits, including CENP-W and CENP-T. However, the molecular recognition and mitotic regulation of the CCAN assembly remain elusive. Here, we revealed that CENP-W binds to the histone fold domain and an uncharacterized N-terminal region of CENP-T. Aurora B phosphorylates CENP-W at threonine 60, which enhances the interaction between CENP-W and CENP-T to ensure robust metaphase chromosome alignment and accurate chromosome segregation in mitosis. These findings delineate a conserved signaling cascade that integrates protein phosphorylation with CCAN integrity for the maintenance of genomic stability.


Asunto(s)
Aurora Quinasa B , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Mitosis , Aurora Quinasa B/metabolismo , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Fosforilación , Células HeLa , Cinetocoros/metabolismo , Unión Proteica , Centrómero/metabolismo
8.
Nucleus ; 13(1): 208-220, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36037227

RESUMEN

The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.


Asunto(s)
Centrómero , Cinetocoros , Puntos de Control del Ciclo Celular , Segregación Cromosómica , Mitosis , Huso Acromático
9.
Curr Biol ; 31(1): 173-181.e7, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125865

RESUMEN

Despite the essentiality for faithful chromosome segregation, centromere architectures are diverse among eukaryotes1,2 and embody two main configurations: mono- and holocentromeres, referring, respectively, to localized or unrestricted distribution of centromeric activity. Of the two, some holocentromeres offer the curious condition of having arisen independently in multiple insects, most of which have lost the otherwise essential centromere-specifying factor CenH33 (first described as CENP-A in humans).4-7 The loss of CenH3 raises intuitive questions about how holocentromeres are organized and regulated in CenH3-lacking insects. Here, we report the first chromatin-level description of CenH3-deficient holocentromeres by leveraging recently identified centromere components6,7 and genomics approaches to map and characterize the holocentromeres of the silk moth Bombyx mori, a representative lepidopteran insect lacking CenH3. This uncovered a robust correlation between the distribution of centromere sites and regions of low chromatin activity along B. mori chromosomes. Transcriptional perturbation experiments recapitulated the exclusion of B. mori centromeres from active chromatin. Based on reciprocal centromere occupancy patterns observed along differentially expressed orthologous genes of Lepidoptera, we further found that holocentromere formation in a manner that is recessive to chromatin dynamics is evolutionarily conserved. Our results help us discuss the plasticity of centromeres in the context of a role for the chromosome-wide chromatin landscape in conferring centromere identity rather than the presence of CenH3. Given the co-occurrence of CenH3 loss and holocentricity in insects,7 we further propose that the evolutionary establishment of holocentromeres in insects was facilitated through the loss of a CenH3-specified centromere.


Asunto(s)
Bombyx/genética , Proteína A Centromérica/deficiencia , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas de Insectos/deficiencia , Animales , Bombyx/metabolismo , Línea Celular , Centrómero/genética , Proteína A Centromérica/genética , Segregación Cromosómica , Proteínas de Insectos/genética , Cinetocoros/metabolismo
10.
Curr Biol ; 31(8): 1581-1591.e3, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33651990

RESUMEN

The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Anafase , Línea Celular Tumoral , Inestabilidad Cromosómica , Humanos , Microtúbulos
11.
Curr Biol ; 30(4): 561-572.e10, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32032508

RESUMEN

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3 (also called CENP-A), which physically interacts with components of the inner kinetochore constitutive centromere-associated network (CCAN). Unexpectedly, regarding its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3 while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components, including a divergent CENP-T homolog, that are required for accurate mitotic progression. Our study focuses on CENP-T, which we found to be sufficient to recruit the Mis12 and Ndc80 outer kinetochore complexes. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T and additional CCAN homologs in other independently derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, contributing to the emerging picture of an unexpected plasticity to build a kinetochore.


Asunto(s)
Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Cinetocoros , Lepidópteros/genética , Secuencia de Aminoácidos , Animales , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Lepidópteros/metabolismo , Alineación de Secuencia
12.
Elife ; 72018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30117803

RESUMEN

Chromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.


Asunto(s)
Cromatina/genética , Cinetocoros , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microtúbulos/genética , Fosforilación , Saccharomyces cerevisiae/genética , Transducción de Señal
13.
Elife ; 72018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29629870

RESUMEN

Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules' residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Polimerizacion , Unión Proteica , Multimerización de Proteína
14.
Trends Cell Biol ; 26(7): 498-510, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26877204

RESUMEN

The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover.


Asunto(s)
Evolución Molecular , Cinetocoros/metabolismo , Animales , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Células Eucariotas/metabolismo , Humanos , Modelos Biológicos
15.
Open Biol ; 6(1): 150230, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26791246

RESUMEN

Most studies using knockout technologies to examine protein function have relied either on shutting off transcription (conventional conditional knockouts with tetracycline-regulated gene expression or gene disruption) or destroying the mature mRNA (RNAi technology). In both cases, the target protein is lost at a rate determined by its intrinsic half-life. Thus, protein levels typically fall over at least 1-3 days, and cells continue to cycle while exposed to a decreasing concentration of the protein. Here we characterise the kinetochore proteome of mitotic chromosomes isolated from a cell line in which the essential kinetochore protein CENP-T is present as an auxin-inducible degron (AID) fusion protein that is fully functional and able to support the viability of the cells. Stripping of the protein from chromosomes in early mitosis via targeted proteasomal degradation reveals the dependency of other proteins on CENP-T for their maintenance in kinetochores. We compare these results with the kinetochore proteome of conventional CENP-T/W knockouts. As the cell cycle is mostly formed from G1, S and G2 phases a gradual loss of CENP-T/W levels is more likely to reflect dependencies associated with kinetochore assembly pre-mitosis and upon entry into mitosis. Interestingly, a putative super-complex involving Rod-Zw10-zwilch (RZZ complex), Spindly, Mad1/Mad2 and CENP-E requires the function of CENP-T/W during kinetochore assembly for its stable association with the outer kinetochore, but once assembled remains associated with chromosomes after stripping of CENP-T during mitosis. This study highlights the different roles core kinetochore components may play in the assembly of kinetochores (upon entry into mitosis) versus the maintenance of specific components (during mitosis).


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/metabolismo , Cinetocoros/metabolismo , Mitosis , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Pollos , Metafase , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteolisis , Proteómica
16.
Genetics ; 200(1): 79-90, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716979

RESUMEN

Kinetochores are conserved protein complexes that bind the replicated chromosomes to the mitotic spindle and then direct their segregation. To better comprehend Saccharomyces cerevisiae kinetochore function, we dissected the phospho-regulated dynamic interaction between conserved kinetochore protein Cnn1(CENP-T), the centromere region, and the Ndc80 complex through the cell cycle. Cnn1 localizes to kinetochores at basal levels from G1 through metaphase but accumulates abruptly at anaphase onset. How Cnn1 is recruited and which activities regulate its dynamic localization are unclear. We show that Cnn1 harbors two kinetochore-localization activities: a C-terminal histone-fold domain (HFD) that associates with the centromere region and a N-terminal Spc24/Spc25 interaction sequence that mediates linkage to the microtubule-binding Ndc80 complex. We demonstrate that the established Ndc80 binding site in the N terminus of Cnn1, Cnn1(60-84), should be extended with flanking residues, Cnn1(25-91), to allow near maximal binding affinity to Ndc80. Cnn1 localization was proposed to depend on Mps1 kinase activity at Cnn1-S74, based on in vitro experiments demonstrating the Cnn1-Ndc80 complex interaction. We demonstrate that from G1 through metaphase, Cnn1 localizes via both its HFD and N-terminal Spc24/Spc25 interaction sequence, and deletion or mutation of either region results in anomalous Cnn1 kinetochore levels. At anaphase onset (when Mps1 activity decreases) Cnn1 becomes enriched mainly via the N-terminal Spc24/Spc25 interaction sequence. In sum, we provide the first in vivo evidence of Cnn1 preanaphase linkages with the kinetochore and enrichment of the linkages during anaphase.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Anafase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Genetics ; 201(2): 543-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275423

RESUMEN

Centromeres of the fission yeast Schizosaccharomyces pombe lack the highly repetitive sequences that make most other "regional" centromeres refractory to analysis. To map fission yeast centromeres, we applied H4S47C-anchored cleavage mapping and native and cross-linked chromatin immunoprecipitation with paired-end sequencing. H3 nucleosomes are nearly absent from the central domain, which is occupied by centromere-specific H3 (cenH3 or CENP-A) nucleosomes with two H4s per particle that are mostly unpositioned and are more widely spaced than nucleosomes elsewhere. Inner kinetochore proteins CENP-A, CENP-C, CENP-T, CENP-I, and Scm3 are highly enriched throughout the central domain except at tRNA genes, with no evidence for preferred kinetochore assembly sites. These proteins are weakly enriched and less stably incorporated in H3-rich heterochromatin. CENP-A nucleosomes protect less DNA from nuclease digestion than H3 nucleosomes, while CENP-T protects a range of fragment sizes. Our results suggest that CENP-T particles occupy linkers between CENP-A nucleosomes and that classical regional centromeres differ from other centromeres by the absence of CENP-A nucleosome positioning.


Asunto(s)
Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Portadoras/genética , Ensamble y Desensamble de Cromatina/genética , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Cinetocoros , Nucleosomas/genética , Schizosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA