Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 22(10): 2341-2356, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37505444

RESUMEN

UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.


Asunto(s)
Arabidopsis , Brassica napus , Mariposas Nocturnas , Animales , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Brassica napus/genética , Herbivoria , Lignina , Mariposas Nocturnas/fisiología , Plantas
2.
J Pineal Res ; 74(3): e12858, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36732033

RESUMEN

Increasing carbon dioxide (CO2 ) promotes photosynthesis and mitigates heat stress-induced deleterious effects on plants, but the regulatory mechanisms remain largely unknown. Here, we found that tomato (Solanum lycopersicum L.) plants treated with high atmospheric CO2 concentrations (600, 800, and 1000 µmol mol-1 ) accumulated increased levels of melatonin (N-acetyl-5-methoxy tryptamine) in their leaves and this response is conserved across many plant species, including Arabidopsis, rice, wheat, mustard, cucumber, watermelon, melon, and hot pepper. Elevated CO2 (eCO2 ; 800 µmol mol-1 ) caused a 6.8-fold increase in leaf melatonin content, and eCO2 -induced melatonin biosynthesis preferentially occurred through chloroplast biosynthetic pathways in tomato plants. Crucially, manipulation of endogenous melatonin levels by genetic means affected the eCO2 -induced accumulation of sugar and starch in tomato leaves. Furthermore, net photosynthetic rate, maximum photochemical efficiency of photosystem II, and transcript levels of chloroplast- and nuclear-encoded photosynthetic genes, such as rbcL, rbcS, rbcA, psaD, petB, and atpA, significantly increased in COMT1 overexpressing (COMT1-OE) tomato plants, but not in melatonin-deficient comt1 mutants at eCO2 conditions. While eCO2 enhanced plant tolerance to heat stress (42°C) in wild-type and COMT1-OE, melatonin deficiency compromised eCO2 -induced thermotolerance in comt1 plants. The expression of heat shock proteins genes increased in COMT1-OE but not in comt1 plants in response to eCO2 under heat stress. Further analysis revealed that eCO2 -induced thermotolerance was closely linked to the melatonin-dependent regulation of reactive oxygen species, redox homeostasis, cellular protein protection, and phytohormone metabolism. This study unveiled a crucial mechanism of elevated CO2 -induced thermotolerance in which melatonin acts as an essential endogenous signaling molecule in tomato plants.


Asunto(s)
Melatonina , Solanum lycopersicum , Termotolerancia , Dióxido de Carbono/metabolismo , Fotosíntesis
3.
J Pineal Res ; 62(2)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28095626

RESUMEN

Melatonin regulates broad aspects of plant responses to various biotic and abiotic stresses, but the upstream regulation of melatonin biosynthesis by these stresses remains largely unknown. Herein, we demonstrate that transcription factor heat-shock factor A1a (HsfA1a) conferred cadmium (Cd) tolerance to tomato plants, in part through its positive role in inducing melatonin biosynthesis under Cd stress. Analysis of leaf phenotype, chlorophyll content, and photosynthetic efficiency revealed that silencing of the HsfA1a gene decreased Cd tolerance, whereas its overexpression enhanced plant tolerance to Cd. HsfA1a-silenced plants exhibited reduced melatonin levels, and HsfA1a overexpression stimulated melatonin accumulation and the expression of the melatonin biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1) under Cd stress. Both an in vitro electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a binds to the COMT1 gene promoter. Meanwhile, Cd stress induced the expression of heat-shock proteins (HSPs), which was compromised in HsfA1a-silenced plants and more robustly induced in HsfA1a-overexpressing plants under Cd stress. COMT1 silencing reduced HsfA1a-induced Cd tolerance and melatonin accumulation in HsfA1a-overexpressing plants. Additionally, the HsfA1a-induced expression of HSPs was partially compromised in COMT1-silenced wild-type or HsfA1a-overexpressing plants under Cd stress. These results demonstrate that HsfA1a confers Cd tolerance by activating transcription of the COMT1 gene and inducing accumulation of melatonin that partially upregulates expression of HSPs.


Asunto(s)
Cadmio/toxicidad , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Choque Térmico/metabolismo , Melatonina/biosíntesis , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Catecol O-Metiltransferasa/genética , Inmunoprecipitación de Cromatina , Cromatografía Líquida de Alta Presión , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/biosíntesis , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa
4.
Physiol Mol Plant Pathol ; 89: 49-54, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25892845

RESUMEN

Leaf rust, caused by the foliar pathogen Puccinia triticina is a major disease of wheat in the southern region of Brazil and invariably impacts on production, being responsible for high yield losses. The Brazilian wheat cultivar Toropi has proven, durable adult plant resistance (APR) to leaf rust, which uniquely shows a pre-haustorial resistance phenotype. In this study we aimed to understand the interaction between P. triticina and the pre-haustorial APR in Toropi by quantitatively evaluating the temporal transcription profiles of selected genes known to be related to infection and defense in wheat. The expression profiles of 15 selected genes varied over time, grouping into six expression profile groups. The expression profiles indicated the induction of classical defence pathways in response to pathogen development, but also the potential modification of Toropi's cellular status for the benefit of the pathogen. Classical defence genes, including peroxidases, ß-1,3-glucanases and an endochitinase were expressed both early (pre-haustorial) and late (post-haustorial) over the 72 h infection time course, while induction of transcription of other infection-related genes with a potential role in defence, although variable was maintained through-out. These genes directly or indirectly had a role in plant lignification, oxidative stress, the regulation of energy supply, water and lipid transport, and cell cycle regulation. The early induction of transcription of defence-related genes supports the pre-haustorial resistance phenotype in Toropi, providing a valuable source of genes controlling leaf rust resistance for wheat breeding.

5.
Environ Pollut ; 252(Pt A): 51-61, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31146238

RESUMEN

Melatonin (Mel) serves as an important signalling molecule in various aspects of stress tolerance in plants. However, the function of Mel in pesticide metabolism remains unknown. Here, selecting the widely used fungicide carbendazim (MBC) as the model, we found that exogenous Mel had the ability to alleviate pesticide phytotoxicity and residues in tomato as well as in some other vegetables. Additionally, overexpression of the Mel biosynthetic gene caffeic acid O-methyltransferase 1 (COMT1) significantly enhanced the capacity of the tomato to reduce MBC phytotoxicity and residue. This outcome was mainly because of the Mel-induced antioxidant capability, as well as the key detoxification process. Indeed, levels of reactive oxygen species (ROS) and lipid peroxides significantly decreased after applying exogenous Mel or overexpressing COMT1, which resulted from direct ROS scavenging, and increased Mel levels significantly enhanced antioxidant enzymatic activity. More importantly, Mel activated the ascorbate-glutathione cycle to participate in glutathione S-transferase-mediated pesticide detoxification. A grafting experiment showed that rootstocks from COMT1 transgenic plants increased the Mel accumulation of wild-type scions, resulting in MBC metabolism in the scions. To our knowledge, this is the first report providing evidence of Mel-induced pesticide metabolism, which provides a novel approach for minimizing pesticide residues in crops by exploiting plant self-detoxification mechanisms.


Asunto(s)
Bencimidazoles/metabolismo , Carbamatos/metabolismo , Fungicidas Industriales/metabolismo , Inactivación Metabólica/fisiología , Melatonina/metabolismo , Metiltransferasas/metabolismo , Solanum lycopersicum/metabolismo , Bencimidazoles/toxicidad , Carbamatos/toxicidad , Fungicidas Industriales/toxicidad , Glutatión Transferasa/metabolismo , Peróxidos Lipídicos/metabolismo , Melatonina/biosíntesis , Metiltransferasas/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA