Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 299(6): 104768, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142228

RESUMEN

Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1ß-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side-chain reductase as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this sterol side-chain reductase reduces Δ24,28 double bonds required for phytosterol biogenesis as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification, and enzymatic reconstitution, we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.


Asunto(s)
Colesterol , Dioscorea , Fitosteroles , Australia , Colesterol/biosíntesis , Familia 51 del Citocromo P450/genética , Familia 51 del Citocromo P450/aislamiento & purificación , Familia 51 del Citocromo P450/metabolismo , Dioscorea/clasificación , Dioscorea/enzimología , Dioscorea/genética , Oxidorreductasas/metabolismo , Fitosteroles/biosíntesis , Fitosteroles/química , Fitosteroles/genética , Saccharomyces cerevisiae/genética , Saponinas/biosíntesis , Saponinas/genética , Transcriptoma
2.
J Biol Chem ; 299(7): 104841, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209823

RESUMEN

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4ß,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3ß-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Desmetilación , Lanosterol , Humanos , Catálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Cinética , Lanosterol/química , Lanosterol/metabolismo , Oxidación-Reducción
3.
Appl Environ Microbiol ; 90(4): e0001724, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38534143

RESUMEN

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Asunto(s)
Fungicidas Industriales , Solanum lycopersicum , Humanos , Aspergillus fumigatus/genética , Azoles/farmacología , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Fungicidas Industriales/farmacología , Verduras , Pruebas de Sensibilidad Microbiana
4.
Bioorg Med Chem ; 97: 117543, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071944

RESUMEN

In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.


Asunto(s)
Antifúngicos , Azoles , Animales , Ratones , Antifúngicos/química , Azoles/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Relación Estructura-Actividad
5.
Mycoses ; 67(7): e13766, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007526

RESUMEN

BACKGROUND: The resistance of Aspergillus flavus to the azole antifungal drugs is an emerging problem. Mutations in the molecular targets of the azole antifungals - CYP 51 A, B and C - are possible mechanisms of resistance, but data to confirm this hypothesis are scarce. In addition, the behaviour of resistant strains in vitro and in vivo is not yet understood. OBJECTIVES: This study had 3 objectives. The first was to compare the sequences of CYP51 A, B and C in resistant and susceptible strains of A. flavus. The second was to look for the existence of a fitness cost associated with resistance. The third was to evaluate the activity of voriconazole and posaconazole on resistant strains in the Galleria mellonella model. METHODS: The CYP51 A, B and C sequences of seven resistant strains with those of four susceptible strains are compared. Fitness costs were assessed by growing the strains in RPMI medium and testing their virulence in G. mellonella larvae. In addition, G. mellonella larvae infected with strains of A. flavus were treated with voriconazole and posaconazole. RESULTS: In the CYP51A sequences, we found the A91T, C708T and A1296T nucleotide substitutions only in the resistant strains. The resistant strains showed a fitness cost with reduced in vitro growth and reduced virulence in G. mellonella. In vivo resistance to posaconazole is confirmed in a strain with the highest MIC for this antifungal agent. CONCLUSIONS: These results allow to conclude that some substitutions in CYP51 genes, in particular CYP51A, contribute to resistance to azole drugs in A. flavus. The study of the relationship between drug dosage and treatment duration with resistance and the reduction of fitness costs in resistant strains is a major perspective of this study. This work could help to establish recommendations for the treatment of infections with resistant strains of A. flavus.


Asunto(s)
Antifúngicos , Aspergillus flavus , Azoles , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Larva , Pruebas de Sensibilidad Microbiana , Voriconazol , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Animales , Voriconazol/farmacología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Larva/microbiología , Triazoles/farmacología , Proteínas Fúngicas/genética , Mariposas Nocturnas/microbiología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Virulencia , Aptitud Genética , Modelos Animales de Enfermedad
6.
Mycoses ; 67(5): e13732, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712846

RESUMEN

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Proteínas Fúngicas , Mutación , Triazoles , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Humanos , Burkina Faso/epidemiología , Proteínas Fúngicas/genética , Antifúngicos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Aspergilosis/microbiología , Aspergilosis/epidemiología , Microbiología del Aire
7.
Pestic Biochem Physiol ; 200: 105828, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582592

RESUMEN

Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.


Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Fusarium/genética , Glycine max , Simulación del Acoplamiento Molecular , China
8.
Chem Biodivers ; 21(5): e202400316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422224

RESUMEN

New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.


Asunto(s)
Antibacterianos , Antifúngicos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Triazoles , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hongos/efectos de los fármacos , Bacterias/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química
9.
Plant Dis ; : PDIS04230743RE, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37682225

RESUMEN

Botrytis cinerea is a broad-host-range necrotrophic phytopathogen responsible for serious diseases in leading crops worldwide. The novel sterol 14α-demethylase inhibitor (DMI) pyrisoxazole was recently registered for the control of tomato gray mold caused by B. cinerea in China. One hundred fifty-seven isolates of B. cinerea were collected from tomato greenhouses in 14 cities of Liaoning Province from 2016 to 2021 and examined for sensitivity to pyrisoxazole, with a mean EC50 value of 0.151 µg/ml. Three highly resistant isolates, XD-5, DG-4, and GQ-3, were screened, and the EC50 values were 0.734, 0.606, and 0.639 µg/ml with corresponding resistance factors of 12.88, 10.63, and 11.21, respectively. Compared with field-sensitive strains, the highly resistant isolate XD-5 exhibited fitness defects in traits, including mycelial growth, conidial production, and pathogenicity, but DG-4 and GQ-3 did not experience fitness costs. Positive cross-resistance was observed only between pyrisoxazole and the DMIs tebuconazole and prochloraz but not between pyrisoxazole and the non-DMIs iprodione, procymidone, pyrimethanil, fludioxonil, fluazinam, and fluopyram. Sequence alignment of the CYP51 gene indicated that three point mutations were observed in the highly resistant mutant, namely, V24I in XD-5, G461S in GQ-3, and R464K in DG-4. When exposed to pyrisoxazole, the induced expression levels of the ABC transporter AtrD and MFS transporter Mfs1 increased in the resistant isolates compared with those in the sensitive isolates, whereas the expression level of the CYP51 gene did not change significantly. Molecular docking suggested that the G461S and R464K mutations both led to a decrease in the binding energy between CYP51 and pyrisoxazole, whereas no change was found with the V24I mutation. Thus, two point mutations in the CYP51 protein combined with induced expression of the Mfs1 and AtrD genes appeared to mediate the pyrisoxazole resistance of the highly resistant mutants DG-4 and GQ-3, while the overexpression of the Mfs1 and AtrD genes was responsible for the highly resistant mutant XD-5.

10.
Plant Dis ; 108(2): 375-381, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37578371

RESUMEN

Sterol demethylation inhibitor (DMI) fungicides continue to be essential components for the control of brown rot of peach caused by Monilinia fructicola in the United States and worldwide. In the southeastern United States, resistance to DMIs had been associated with overexpression of the cytochrome P450 14α-demethylase gene MfCYP51 as well as the genetic element Mona, a 65 bp in length nucleotide sequence located upstream of MfCYP51 in resistant isolates. About 20 years after the first survey, we reevaluated sensitivity of M. fructicola from South Carolina and Georgia to propiconazole and also evaluated isolates from Alabama for the first time. A total of 238 M. fructicola isolates were collected from various commercial and two experimental orchards, and sensitivity to propiconazole was determined based on a discriminatory dose of 0.3 µg/ml. Results indicated 16.2, 89.2, and 72.4% of isolates from Alabama, Georgia, and South Carolina, respectively, were resistant to propiconazole. The detection of resistance in Alabama is the first report for the state. All resistant isolates contained Mona, but it was absent from most sensitive isolates. It was unclear if the resistance frequency had increased in South Carolina and Georgia. However, the resistance levels (as assessed by the isolate frequency in discriminatory dose-based relative growth categories) did not change notably, and no evidence of other resistance genotypes was found. Analysis of the upstream MfCYP51 gene region in the resistant isolate CF010 revealed an insertion sequence described for the first time in this report. Our study suggests that current fungicide spray programs have been effective against increasing resistance levels in populations of M. fructicola and suppressing development of new resistant genotypes of the pathogen.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Triazoles , Estados Unidos , Fungicidas Industriales/farmacología , Ascomicetos/genética , Georgia
11.
Antimicrob Agents Chemother ; 67(8): e0022523, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428039

RESUMEN

Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding cyp51A gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non-cyp51A mutations has been recognized. Previous studies have revealed that some isolates with non-cyp51A mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non-cyp51A mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without cyp51A mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of mba1 had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to mba1-mediated drug resistance. The findings in this study suggest that some non-cyp51A proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Humanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Azoles/farmacología , Azoles/metabolismo , Mitocondrias/metabolismo , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
12.
Antimicrob Agents Chemother ; 67(11): e0091823, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37815358

RESUMEN

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.


Asunto(s)
Aspergillus fumigatus , Azoles , Humanos , Azoles/farmacología , Azoles/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Antifúngicos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Pruebas de Sensibilidad Microbiana
13.
Fungal Genet Biol ; 168: 103814, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343617

RESUMEN

Continued use of fungicides provides a strong selection pressure towards strains with mutations to render these chemicals less effective. Previous research has shown that resistance to the demethylation inhibitor (DMI) fungicides, which target ergosterol synthesis, in the canola pathogen Leptosphaeria maculans has emerged in Australia and Europe. The change in fungicide sensitivity of individual isolates was found to be due to DNA insertions into the promoter of the erg11/CYP51 DMI target gene. Whether or not these were the only types of mutations and how prevalent they were in Australian populations was explored in the current study. New isolates with reduced DMI sensitivity were obtained from screens on DMI-treated plants, revealing eight independent insertions in the erg11 promoter. A novel deep amplicon sequencing approach applied to populations of ascospores fired from stubble identified an additional undetected insertion allele and quantified the frequencies of all known insertions, suggesting that, at least in the samples processed, the combined frequency of resistant alleles is between 0.0376% and 32.6%. Combined insertion allele frequencies positively correlated with population-level measures of in planta resistance to four different DMI treatments. Additionally, there was no evidence for erg11 coding mutations playing a role in conferring resistance in Australian populations. This research provides a key method for assessing fungicide resistance frequency in stubble-borne populations of plant pathogens and a baseline from which additional surveillance can be conducted in L. maculans. Whether or not the observed resistance allele frequencies are associated with loss of effective disease control in the field remains to be established.


Asunto(s)
Ascomicetos , Brassica napus , Fungicidas Industriales , Fungicidas Industriales/farmacología , Alelos , Australia , Enfermedades de las Plantas
14.
Chembiochem ; 24(19): e202300406, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382991

RESUMEN

Current treatment for Chagas' disease is based on two drugs, Nifurtimox and Benznidazol, which have limitations that reduce the effectiveness and continuity of treatment. Thus, there is an urgent need to develop new, safe and effective drugs. In previous work, two new metal-based compounds with trypanocidal activity, Pd-dppf-mpo and Pt-dppf-mpo, were fully characterized. To unravel the mechanism of action of these two analogous metal-based drugs, high-throughput omics studies were performed. A multimodal mechanism of action was postulated with several candidates as molecular targets. In this work, we validated the ergosterol biosynthesis pathway as a target for these compounds through the determination of sterol levels by HPLC in treated parasites. To understand the molecular level at which these compounds participate, two enzymes that met eligibility criteria at different levels were selected for further studies: phosphomevalonate kinase (PMK) and lanosterol 14-α demethylase (CYP51). Molecular docking processes were carried out to search for potential sites of interaction for both enzymes. To validate these candidates, a gain-of-function strategy was used through the generation of overexpressing PMK and CYP51 parasites. Results here presented confirm that the mechanism of action of Pd-dppf-mpo and Pt-dppf-mpo compounds involves the inhibition of both enzymes.

15.
Med Mycol ; 61(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37580143

RESUMEN

Aspergillus species is a widespread environmental mould that can cause aspergillosis. The purpose of this study was to investigate the antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates from different provinces in Eastern China. The data included the antifungal susceptibility distributions with eight common antifungal drugs, cyp51A gene mutations of triazole-resistant Aspergillus fumigatus sensu stricto, and the genotypic relationships among the A. fumigatus sensu stricto isolates based on microsatellite typing. A. fumigatus sensu lato was the most common clinical Aspergillus species (n = 252), followed by A. flavus (n = 169), A. terreus (n = 37), A. niger (n = 29), and A. nidulans (n = 4). The modal minimum effective concentration values of micafungin and anidulafungin were lower than those of caspofungin for all Aspergillus species. The in vitro efficacy of isavuconazole was similar to that of voriconazole against most Aspergillus species. Sequencing revealed cyp51A gene mutations TR34/L98H, TR34/L98H/S297T/F495I, and TR46/Y121F/T289A in four triazole-resistant A. fumigatus sensu stricto. Phylogenetic analyses using microsatellite markers of A. fumigatus sensu stricto revealed that 211 unique genotypes clustered into two clades. The data demonstrate the diversity of clinically relevant Aspergillus species in Eastern China. Routine antifungal susceptibility testing should be performed to monitor the antifungal resistance and guide clinical therapy.


The 6-year multicenter study collected a total of 491 Aspergillus isolates from Eastern China to investigate the in vitro antifungal susceptibility to eight antifungal drugs, the cyp51A gene mutations of triazole-resistant A. fumigatus sensu stricto, and the genetic relatedness through microsatellite typing.


Asunto(s)
Antifúngicos , Infecciones Fúngicas Invasoras , Animales , Antifúngicos/farmacología , Aspergillus fumigatus , Filogenia , Proteínas Fúngicas/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Aspergillus , Triazoles/farmacología , Genotipo , Infecciones Fúngicas Invasoras/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
16.
Phytopathology ; 113(6): 1022-1033, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36576403

RESUMEN

Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 µg/ml. The EC50 values of 100 isolates (83%) were lower than 1 µg/ml, and those of 20 isolates (17%) were higher than 1 µg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 µg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Fungicidas Industriales/farmacología , Colletotrichum/genética , Árboles , Enfermedades de las Plantas/microbiología , , China
17.
Phytopathology ; 113(2): 321-333, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36075052

RESUMEN

Globally, yield losses associated with failed crop protection due to fungicide-resistant pathogens present an increasing problem. For stubble-borne pathogens, assessment of crop residues during the off-season could provide early fungicide resistance quantification for informed management decisions to mitigate yield losses. However, stubble assessment is hampered by assay inhibitors that are derived from decaying organic matter. To overcome assay inhibition from weathered stubble samples, we used a systems approach to quantify the frequency of resistance to demethylase inhibitor fungicides of the barley pathogen Pyrenophora teres f. teres. The system canvassed (i) 10 ball-milling conditions; (ii) four DNA extraction methodologies; and (iii) three column purification techniques for the provision of sufficient yield, quality, and purity of fungal DNA for a PCR-based fungicide resistance assay. Results show that DNA quantity and purity differed within each of the above three categories, with the optimized pipeline being (i) ball-milling samples in a 50-ml stainless steel canister for 5 min using a 20-mm ball at 30 revolutions s-1; (ii) a modified Brandfass method (extracted 64% more DNA than other methods assessed); and (iii) use of silica resin columns for the highest DNA concentration with optimal DNA purity. The chip-digital PCR assay, which quantified fungicide resistance from field samples, was unaffected by the DNA extraction method or purification technique, provided that thresholds of template quantity and purity were satisfied. In summary, this study has developed molecular pipeline options for pathogen fungicide resistance quantification from cereal stubbles, which can guide management for improved crop protection outcomes.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Grano Comestible/genética , Manejo de Especímenes , Farmacorresistencia Fúngica/genética
18.
Mycoses ; 66(2): 98-105, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36196507

RESUMEN

BACKGROUND: Invasive aspergillosis is one of the most common fungal infections and azole resistance in Aspergillus fumigatus (ARAf) is a growing medical concern in high-risk patients. To our knowledge, there is no comprehensive epidemiological surveillance study on the prevalence and incidence of ARAf isolates available in Iran. OBJECTIVES: The study aimed to report a five-year survey of triazole phenotypes and genotype patterns concerning the resistance in clinical and environmental A. fumigatus in Iran. METHODS: During the study time frame (2016-2021), a total of 1208 clinical and environmental Aspergillus species were collected. Isolates were examined and characterised by in vitro antifungal susceptibility testing (CLSI M38 broth microdilution) and cyp51A sequencing. RESULTS: In total, 485 Aspergillus section Fumigati strains were recovered (clinical, n = 23; 4.74% and environment, n = 462; 95.26%). Of which A. fumigatus isolates were the most prevalent species (n = 483; 99.59%). Amphotericin B and the echinocandins demonstrated good in vitro activity against the majority of isolates in comparison to triazole. Overall, 16.15% (n = 78) of isolates were phenotypically resistant to at least one of the azoles. However, 9.73% of A. fumigatus isolates for voriconazole were classified as resistant, 89.03% were susceptible, and 1.24% were intermediate. While, for itraconazole and posaconazole, using the epidemiological cut-off value 16.15% and 6.83% of isolates were non-wild types, respectively. Remarkably, in 21.79% (n = 17) phenotypically resistant isolates, no mutations were detected within the cyp51A gene. CONCLUSION: Although the incidence of ARAf varies from country to country, in Iran the rate has ranged from 3.3% to 18%, significantly increasing from 2013 to 2021. Strikingly, a quarter of the phenotypically resistant isolates harboured no mutations in the cyp51A gene. It seems that other mechanisms of resistance are importantly increasing. To fill a gap in our understanding of the mechanism for azole resistance in the non-cyp51A strains, we highly recommend further and more extensive monitoring of the soil with or without exposure to fungicides in agricultural and hospital areas.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Antifúngicos/farmacología , Irán/epidemiología , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Azoles/farmacología , Aspergillus , Pruebas de Sensibilidad Microbiana
19.
J Enzyme Inhib Med Chem ; 38(1): 2244696, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37553905

RESUMEN

A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.


Asunto(s)
Antifúngicos , Triazoles , Humanos , Antifúngicos/química , Triazoles/química , Simulación del Acoplamiento Molecular , Fluconazol/farmacología , Candida albicans , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
20.
Pestic Biochem Physiol ; 189: 105291, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549812

RESUMEN

Prochloraz has been used to control Fusarium fujikuroi, the causative pathogen of rice bakanae disease. Linkage analysis of FfCYP51 genes in the progenies obtained from crossing prochloraz moderately resistant and sensitive strains suggested that the FfCYP51B gene is involved in prochloraz resistance. Sequence comparison revealed that the prochloraz-resistant strain had an F511S or S312T/F511S substitution in FfCYP51B compared with the sensitive strains. The contribution of the S312T and F511S substitutions in FfCYP51B to prochloraz resistance was investigated by creating S/F-, T/F-, or T/S- types at 312/511 codons from the S/S-type, which is a natural moderately resistant strain, using a gene-editing technique. T/S exhibited the highest prochloraz resistance, followed by S/S-, T/F-, and S/F-types. These results indicated that the S312T and F511S substitutions in FfCYP51B had a synergistic effect on prochloraz resistance in F. fujikuroi.


Asunto(s)
Fusarium , Oryza , Sustitución de Aminoácidos , Imidazoles/farmacología , Oryza/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA