Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 162(2): 403-411, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26165941

RESUMEN

Small molecules that interfere with microtubule dynamics, such as Taxol and the Vinca alkaloids, are widely used in cell biology research and as clinical anticancer drugs. However, their activity cannot be restricted to specific target cells, which also causes severe side effects in chemotherapy. Here, we introduce the photostatins, inhibitors that can be switched on and off in vivo by visible light, to optically control microtubule dynamics. Photostatins modulate microtubule dynamics with a subsecond response time and control mitosis in living organisms with single-cell spatial precision. In longer-term applications in cell culture, photostatins are up to 250 times more cytotoxic when switched on with blue light than when kept in the dark. Therefore, photostatins are both valuable tools for cell biology, and are promising as a new class of precision chemotherapeutics whose toxicity may be spatiotemporally constrained using light.


Asunto(s)
Antimitóticos/química , Muerte Celular , Microtúbulos/efectos de los fármacos , Mitosis , Estilbenos/química , Animales , Antimitóticos/toxicidad , Línea Celular Tumoral , Citoesqueleto/química , Humanos , Luz , Ratones , Polimerizacion , Estilbenos/toxicidad
2.
J Pharmacol Exp Ther ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670802

RESUMEN

Histone deacetylase expression and activity are often dysregulated in central nervous system (CNS) tumors, providing a rationale for investigating histone deacetylase inhibitors (HDACIs) in selected brain tumor patients. Although many HDACIs have shown potential in in vitro studies, they have had modest efficacy in vivo This lack of activity could be due to insufficient CNS exposure to the unbound drug. In this study, we investigated the systemic pharmacokinetics and subsequent CNS distribution of two potent HDACIs, vorinostat and quisinostat, in the murine model. Both compounds undergo in vitro degradation in mouse plasma, requiring precautions during sample processing. They also have short half-lives in vivo, in both plasma and CNS, which may lead to diminished efficacy. Transgenic transporter-deficient mouse models show that the CNS delivery of vorinostat was not limited by the two major blood-brain barrier efflux transporters, p-glycoprotein and breast-cancer-resistance protein. Vorinostat had an unbound CNS tissue-to-plasma partition coefficient of 0.06 {plus minus} 0.02. Conversely, the exposure of unbound quisinostat in the brain was only 0.02 {plus minus} 0.001 of that in the plasma, and the CNS distribution of quisinostat was limited by the activity of p-glycoprotein. To gain further context for these findings, the CNS distributional kinetics for vorinostat and quisinostat were compared to another hydroxamic acid HDACI, panobinostat. A comprehensive understanding of the CNS target exposure to unbound HDACI, along with known potencies from in vitro testing, can inform the prediction of a therapeutic window for HDACIs that have limited CNS exposure to unbound drug and guide targeted dosing strategies. Significance Statement This study indicates that quisinostat and vorinostat are susceptible to enzymatic degradation in the plasma, and to a lesser degree, in the target CNS tissues. Employing techniques that minimize the post-sampling degradation in plasma, brain and spinal cord, accurate CNS distributional kinetic parameters for these potentially useful compounds were determined. A knowledge of CNS exposure (Kp,uu), time to peak, and duration can inform dosing strategies in preclinical and clinical trials in selected CNS tumors.

3.
J Pharmacol Exp Ther ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39134424

RESUMEN

Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol (CBD) structural analogue and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once daily 1mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for one week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7-10 in a chronic dosing paradigm and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to pre-paclitaxel injection baseline levels with both I.P. and P.O. administration after acute dosing. In the chronic dosing paradigm, 4 consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, co-administration of KLS -13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain. Significance Statement Chemotherapy-induced neuropathic pain (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39363148

RESUMEN

The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.

5.
Biol Pharm Bull ; 47(8): 1456-1459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39198150

RESUMEN

Research on sex differences has increased across various fields, including cancer and its treatment domains. Reports have indicated sex differences in cancer incidence, survival rates, and the efficacy of anticancer drugs. However, such reports are limited, and in-depth assessments of the underlying mechanisms are still in progress. Although various chemotherapeutic regimens are applicable for breast cancer treatment, reports have surfaced regarding weight gain in female patients undergoing fluorouracil, epirubicin, cyclophosphamide (FEC) or cyclophosphamide, methotrexate, fluorouracil (CMF) therapy. We hypothesized the potential of 5-fluorouracil (5-FU) in weight gain and sex-related differences. To address this, we conducted experiments in mice to confirm weight gain and sex differences following 5-FU administration, and elucidate the underlying mechanisms. Our findings revealed weight gain and increased food intake in female mice following 5-FU administration. Additionally, female mice receiving 5-FU exhibited increased norepinephrine and α1- and α2-adrenergic receptor expression, reduced estradiol levels, and increased ghrelin levels. These results indicate 5-FU administration-induced sex differences in weight gain and implicate increased food intake because of increased norepinephrine and α1- and α2-adrenergic receptor expression, reduced estradiol levels, and a subsequent increase in ghrelin levels, which contribute to weight gain in female patients undergoing CMF therapy.


Asunto(s)
Fluorouracilo , Ghrelina , Caracteres Sexuales , Aumento de Peso , Animales , Femenino , Aumento de Peso/efectos de los fármacos , Masculino , Antimetabolitos Antineoplásicos , Ingestión de Alimentos/efectos de los fármacos , Ratones , Estradiol/sangre , Norepinefrina/metabolismo , Ratones Endogámicos C57BL
6.
Biol Pharm Bull ; 47(5): 941-945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735754

RESUMEN

Hepatitis B virus reactivation (HBV-R) is a serious complication that can occur in patients with resolved HBV infection during cancer chemotherapy. We examined the levels of HBV surface antibody (HBsAb) and HBV core antibody (HBcAb) to assess the incidence of HBV-R in cancer patients including hematopoietic stem cell transplantation (HSCT) and rituximab administration. This retrospective cohort study included 590 patients with resolved HBV infection. The incidence of HBV-R was evaluated 761.5 (range, 90-3898) days after the inititiation of chemotherapy. Of the patients, 13 (2.2%) developed HBV-R after the start of chemotherapy. All 13 patients exhibited lower HBsAb (<100 mIU/mL) levels at baseline. A higher level of HBcAb (≥100 cut off index (C.O.I.)) was a possible risk factor for HBV-R as well as HSCT and rituximab administration. The simultaneous presence of HBsAb <100 mIU/mL and HBcAb ≥100 C.O.I. increased the risk of HBV-R by 18.5%. Patients treated with rituximab were at a higher risk of HBV-R (18.4%) despite having HBcAb <100 C.O.I. Our results suggest that assessment of HBsAb and HBcAb levels prior to the chemotherapy is important for identifying patients at high risk of HBV-R, especially in solid cancers without HSCT and rituximab administration.


Asunto(s)
Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B , Rituximab , Activación Viral , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anticuerpos contra la Hepatitis B/sangre , Anticuerpos contra la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Activación Viral/efectos de los fármacos , Rituximab/uso terapéutico , Rituximab/efectos adversos , Adulto , Anciano , Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Adulto Joven , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antígenos del Núcleo de la Hepatitis B/inmunología , Antígenos del Núcleo de la Hepatitis B/sangre , Anciano de 80 o más Años , Adolescente
7.
Int J Clin Oncol ; 29(7): 873-888, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753042

RESUMEN

BACKGROUND: The Japan Society of Clinical Oncology Clinical Practice Guidelines for Antiemesis 2023 was extensively revised to reflect the latest advances in antineoplastic agents, antiemetics, and antineoplastic regimens. This update provides new evidence on the efficacy of antiemetic regimens. METHODS: Guided by the Minds Clinical Practice Guideline Development Manual of 2017, a rigorous approach was used to update the guidelines; a thorough literature search was conducted from January 1, 1990, to December 31, 2020. RESULTS: Comprehensive process resulted in the creation of 13 background questions (BQs), 12 clinical questions (CQs), and three future research questions (FQs). Moreover, the emetic risk classification was also updated. CONCLUSIONS: The primary goal of the present guidelines is to provide comprehensive information and facilitate informed decision-making, regarding antiemetic therapy, for both patients and healthcare providers.


Asunto(s)
Antieméticos , Oncología Médica , Vómitos , Humanos , Japón , Oncología Médica/normas , Antieméticos/uso terapéutico , Vómitos/prevención & control , Vómitos/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Sociedades Médicas , Náusea/prevención & control , Náusea/tratamiento farmacológico
8.
J Oncol Pharm Pract ; : 10781552241275948, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360447

RESUMEN

INTRODUCTION: 5-Fluorouracil (5-FU) is a chemotherapeutic agent used to treat various types of cancers. Although widely used, it has consistently been attributed to cardiotoxicities after administration. The purpose of this study was to assess the parameters and predictors of cardiotoxicities associated with various 5-FU-based chemotherapeutic protocols in patients with GI/colorectal cancer, as well as the correlation of these cardiotoxic events with age, sex, cumulative dose, and risk factors such as obesity, hypertension, and family history of cardiac diseases. METHODS: A prospective study consisting of 396 patients of both sexes was conducted in the oncology ward of Nishtar Hospital in Multan, Pakistan. Patients were grouped according to the therapeutic protocol they received (5-FU monotherapy or in combination, with different dosing regimens). Electrocardiography and serum troponin levels were used to assess 5-FU-induced cardiotoxicity. In cases where cardiotoxicity was detected, 5-FU treatment was interrupted; nitroglycerin, nitrates, and calcium channel blockers were administered; and cardiac monitoring was initiated. 5-FU was discontinued in all cases of acute myocardial infarction. RESULTS: Of the 396 patients, 28.5% reported different cardiotoxic symptoms after receiving various 5-FU-containing protocols. 35% had anginal pain, 13% suffered a myocardial infarction, 11% developed hypertension, and 10% presented heart failure. Patients receiving 5-FU combination therapy showed cardiotoxic events that were significantly different from those on 5-FU monotherapy. Based on the ECG results, only the QTc-d interval increased significantly (p < 0.001) after therapy. 68% of the patients had troponin levels > 2 ng/mL at the end of treatment. CONCLUSIONS: Pre-existing cardiac diseases, treatment duration, smoking, and obesity were found to be influential components in the development of cardiotoxicity, and patients with cancer should be closely monitored during 5-FU chemotherapy.

9.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(6): 309-319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866478

RESUMEN

This review seeks to highlight and celebrate Professor Tomizo Yoshida's famous work on "Establishment and characterization of a rat ascites sarcoma, later named "Yoshida ascites sarcoma". Considering the tremendous contribution of this ascites tumor system to the subsequent promotion of research on cancer biology and cancer chemotherapy, his paper should be regarded as a monumental one in the cancer field. The research was carried out during 1943 and the results were submitted to this Journal in October 1944, when Japan was approaching a debilitating defeat in World War II in August 1945. In 1947, when "Research on Ascites sarcoma" was first comprehensively introduced to researchers in a special lecture at the Annual Meeting of the Japanese Society of Pathology, the whole audience was deeply impressed and was encouraged to resume scientific activity in Japan.


Asunto(s)
Sarcoma , Animales , Sarcoma/patología , Sarcoma/terapia , Ratas , Humanos , Historia del Siglo XX , Ascitis , Japón
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731935

RESUMEN

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Asunto(s)
Apoptosis , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia , Linfoma , Mitocondrias , Proteína Inhibidora de la Apoptosis Ligada a X , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología , Leucemia/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/patología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citostáticos/farmacología , Antineoplásicos/farmacología
11.
Proteomics ; 23(18): e2200482, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376799

RESUMEN

Metastatic triple-negative breast cancer (TNBC) has a low 5-year survival rate of below 30% with systemic chemotherapy being the most widely used treatment. Bovine milk-derived extracellular vesicles (MEVs) have been previously demonstrated to have anti-cancer attributes. In this study, we isolated bovine MEVs from commercial milk and characterised them according to MISEV guidelines. Bovine MEVs sensitised TNBC cells to doxorubicin, resulting in reduced metabolic potential and cell-viability. Label-free quantitative proteomics of cells treated with MEVs and/or doxorubicin suggested that combinatorial treatment depleted various pro-tumorigenic interferon-inducible gene products and proteins with metabolic function, previously identified as therapeutic targets in TNBC. Combinatorial treatment also led to reduced abundance of various STAT proteins and their downstream oncogenic targets with roles in cell-cycle and apoptosis. Taken together, this study highlights the ability of bovine MEVs to sensitise TNBC cells to standard-of-care therapeutic drug doxorubicin, paving the way for novel treatment regimens.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Neoplasias de la Mama Triple Negativas/patología , Leche/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Vesículas Extracelulares/metabolismo
12.
Cancer Sci ; 114(9): 3728-3739, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37340597

RESUMEN

Retinoblastoma is the most common pediatric eye cancer. It is currently treated with a limited number of drugs, adapted from other pediatric cancer treatments. Drug toxicity and relapse of the disease warrant new therapeutic strategies for these young patients. In this study, we developed a robust tumoroid-based platform to test chemotherapeutic agents in combination with focal therapy (thermotherapy) - a treatment option widely used in clinical practice - in accordance with clinically relevant trial protocols. The model consists of matrix-embedded tumoroids that retain retinoblastoma features and respond to repeated chemotherapeutic drug exposure similarly to advanced clinical cases. Moreover, the screening platform includes a diode laser (810 nm, 0.3 W) to selectively heat the tumoroids, combined with an on-line system to monitor the intratumoral and surrounding temperatures. This allows the reproduction of the clinical settings of thermotherapy and combined chemothermotherapy treatments. When testing the two main drugs currently used in clinics to treat retinoblastoma in our model, we observed results similar to those clinically obtained, validating the utility of the model. This screening platform is the first system to accurately reproduce clinically relevant treatment methods and should lead to the identification of more efficient drugs to treat retinoblastoma.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico
13.
Cancer Cell Int ; 23(1): 116, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322479

RESUMEN

BACKGROUND: Cytotoxic anticancer drugs widely used in cancer chemotherapy have some limitations, such as the development of side effects and drug resistance. Furthermore, monotherapy is often less effective against heterogeneous cancer tissues. Combination therapies of cytotoxic anticancer drugs with molecularly targeted drugs have been pursued to solve such fundamental problems. Nanvuranlat (JPH203 or KYT-0353), an inhibitor for L-type amino acid transporter 1 (LAT1; SLC7A5), has novel mechanisms of action to suppress the cancer cell proliferation and tumor growth by inhibiting the transport of large neutral amino acids into cancer cells. This study investigated the potential of the combined use of nanvuranlat and cytotoxic anticancer drugs. METHODS: The combination effects of cytotoxic anticancer drugs and nanvuranlat on cell growth were examined by a water-soluble tetrazolium salt assay in two-dimensional cultures of pancreatic and biliary tract cancer cell lines. To elucidate the pharmacological mechanisms underlying the combination of gemcitabine and nanvuranlat, we investigated apoptotic cell death and cell cycle by flow cytometry. The phosphorylation levels of amino acid-related signaling pathways were analyzed by Western blot. Furthermore, growth inhibition was examined in cancer cell spheroids. RESULTS: All the tested seven types of cytotoxic anticancer drugs combined with nanvuranlat significantly inhibited the cell growth of pancreatic cancer MIA PaCa-2 cells compared to their single treatment. Among them, the combined effects of gemcitabine and nanvuranlat were relatively high and confirmed in multiple pancreatic and biliary tract cell lines in two-dimensional cultures. The growth inhibitory effects were suggested to be additive but not synergistic under the tested conditions. Gemcitabine generally induced cell cycle arrest at the S phase and apoptotic cell death, while nanvuranlat induced cell cycle arrest at the G0/G1 phase and affected amino acid-related mTORC1 and GAAC signaling pathways. In combination, each anticancer drug basically exerted its own pharmacological activities, although gemcitabine more strongly influenced the cell cycle than nanvuranlat. The combination effects of growth inhibition were also verified in cancer cell spheroids. CONCLUSIONS: Our study demonstrates the potential of first-in-class LAT1 inhibitor nanvuranlat as a concomitant drug with cytotoxic anticancer drugs, especially gemcitabine, on pancreatic and biliary tract cancers.

14.
Mol Pharm ; 20(10): 5078-5089, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37728215

RESUMEN

The abnormal tumor blood vessels with high leakage can promote tumor cells to infiltrate into the systemic circulation and increase the risk of tumor metastasis. In addition, chemotherapy may destroy tumor blood vessels and further aggravate metastasis. Normalizing tumor blood vessels can reduce vascular leakage and increase vascular integrity. The simultaneous administration of vascular normalization drugs and chemotherapy drugs may resist the blood vessels' destruction of chemotherapy. Here, multifunctional nanoparticles (CCM@LMSN/DOX&St), which combined chemotherapy with tumor blood vessel normalization, were prepared for the treatment of breast cancer. The results showed that CCM@LMSN/DOX&St-loaded sunitinib (St) promoted the expression of junction proteins Claudin-4 and VE-cadherin of endothelial cells, reversed the destruction of DOX to the endothelial cell layer, protected the integrity of the endothelial cell layer, and inhibited the migration of 4T1 tumor cells across the endothelial cell layer. In vivo experiments showed that CCM@LMSN/DOX&St effectively inhibited tumor growth in situ; what is exciting was that it also inhibited distal metastasis of breast cancer. CCM@LMSN/DOX&St encapsulated with St can normalize tumor blood vessels, reverse the damage of DOX to tumor blood vessels, increase the integrity of blood vessels, and prevent tumor cell invasion into blood vessels, which can inhibit breast cancer spontaneous metastasis and reduce chemotherapy-induced metastasis. This drug delivery platform effectively inhibited the progression of tumors and provided a promising solution for effective tumor treatment.


Asunto(s)
Neoplasias de la Mama , Nanopartículas Multifuncionales , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/patología , Doxorrubicina , Células Endoteliales/metabolismo , Línea Celular Tumoral , Melanoma Cutáneo Maligno
15.
Pharmacol Res ; 197: 106945, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797662

RESUMEN

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Nanoparticles as drug delivery systems (DDSs) show promise for MDR cancer therapy. However, current DDSs require sophisticated design and construction based on xenogeneic nanomaterials, evoking feasibility and biocompatibility concerns. Herein, a simple but versatile biological DDS (bDDS) composed of human red blood cell (RBC)-derived vesicles (RDVs) with excellent biocompatibility was surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs that remarkably suppressed MDR in uterine sarcoma through a lysosomal-mitochondrial axis-dependent cell death mechanism. Dox-gluRDVs can efficiently deliver and accumulate Dox in lysosomes, bypassing drug efflux transporters and facilitating cellular uptake and retention of Dox in drug-resistant MES-SA/Dx5 cells. The transfer of lysosomal calcium to the mitochondria during mitochondria-lysosome contact due to lysosomal Dox accumulation may result in mitochondrial ROS overproduction, mitochondrial membrane potential loss, and activation of apoptotic signaling for the superior anti-MDR activity of Dox-gluRDVs in vitro and in vivo. This work highlights the great promise of RDVs to serve as a bDDS of Dox to overcome MDR cancers but also opens up a reliable strategy for lysosomal-mitochondrial axis-dependent cell death for fighting against other inoperable cancers.


Asunto(s)
Neoplasias , Humanos , Preparaciones Farmacéuticas , Muerte Celular , Lisosomas , Mitocondrias , Eritrocitos , Doxorrubicina/farmacología
16.
Br J Clin Pharmacol ; 89(12): 3468-3490, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37452618

RESUMEN

A broad-spectrum anti-vomiting effect of neurokinin1 receptor antagonists (NK1 RA), shown in pre-clinical animal studies, has been supported by a more limited range of clinical studies in different indications. However, this review suggests that compared with vomiting, the self-reported sensation of nausea is less affected or possibly unaffected (depending on the stimulus) by NK1 receptor antagonism, a common finding for anti-emetics. The stimulus-independent effects of NK1 RAs against vomiting are explicable by actions within the central pattern generator (ventral brainstem) and the nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The central pattern generator and NTS neurones are multifunctional so the notable lack of obvious effects of NK1 RAs on other reflexes mediated by the same neurones suggests that their anti-vomiting action is dependent on the activation state of the pathway leading to vomiting. Nausea requires activation of cerebral pathways by projection of information from the NTS. Although NK1 receptors are present in cerebral nuclei implicated in nausea, and imaging studies show very high receptor occupancy at clinically used doses, the variable or limited ability of NK1 RAs to inhibit nausea emphasizes: (i) our inadequate understanding of the mechanisms of nausea; and (ii) that classification of a drug as an anti-emetic may give a false impression of efficacy against nausea vs. vomiting. We discuss the potential mechanisms for the differential efficacy of NK1 RA and the implications for future development of drugs that can effectively treat nausea, an area of unmet clinical need.


Asunto(s)
Antieméticos , Antineoplásicos , Animales , Humanos , Antagonistas del Receptor de Neuroquinina-1/farmacología , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Vómitos/inducido químicamente , Vómitos/tratamiento farmacológico , Náusea/inducido químicamente , Náusea/tratamiento farmacológico , Antieméticos/farmacología , Antieméticos/uso terapéutico , Desarrollo de Medicamentos , Antineoplásicos/uso terapéutico
17.
Environ Res ; 238(Pt 2): 116989, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633635

RESUMEN

The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.


Asunto(s)
Antineoplásicos , Enfermedades Cardiovasculares , Quitosano , Cardiopatías , Neoplasias , Humanos , Cardiotoxicidad/tratamiento farmacológico , Preparaciones Farmacéuticas , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
18.
Environ Res ; 238(Pt 1): 117111, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734579

RESUMEN

The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Liposomas/uso terapéutico , Cisplatino/uso terapéutico , Paclitaxel/uso terapéutico , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral
19.
Biol Pharm Bull ; 46(3): 505-510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858580

RESUMEN

Pharmaceutical consultation targeting outpatients at the Fujita Health University Hospital (Japan) provides support to patients undergoing anticancer drug treatment. This study aimed to explore factors that affect the comprehension of cancer chemotherapy among outpatients who received cancer treatment at our hospital. A questionnaire survey was conducted, and comprehension was scored on a scale of 1-5 (1, no comprehension; 5, full comprehension). When factors other than age and sex [the influence of which on comprehension has been reported in previous reports] were noted, differences in comprehension between the questionnaire items were comparatively analyzed according to the presence/absence of the relevant factors. Overall, 536 patients were included. Age (<70 years) and pharmacist interventions were identified as factors contributing to a comprehension score. The levels of comprehension regarding the name of the cancer chemotherapy, content/schedule of the treatment, purposes of the prescribed drugs, and objectives of blood tests were significantly higher in the group that received the pharmaceutical interventions; conversely, the level of comprehension for the self-management of adverse events was significantly lower in this group than in the group that did not receive any pharmaceutical interventions. Age and interventions by the pharmacist affected the comprehension of cancer chemotherapy by patients.


Asunto(s)
Neoplasias , Pacientes Ambulatorios , Humanos , Anciano , Farmacéuticos , Hospitales Universitarios , Preparaciones Farmacéuticas
20.
Int J Clin Oncol ; 28(5): 613-624, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36961615

RESUMEN

Prof. Setsuro Fujii achieved significant results in the field of drug discovery research in Japan. He developed nine well-known drugs: FT, UFT, S-1 and FTD/TPI are anticancer drugs, while cetraxate hydrochloride, camostat mesilate, nafamostat mesilate, gabexate mesilate and pravastatin sodium are therapeutic drugs for various other diseases. He delivered hope to patients with various diseases across the world to improve their condition. Even now, drug discovery research based on Dr. Fujii's ideas is continuing.


Asunto(s)
Antineoplásicos , Gabexato , Masculino , Humanos , Pirimidinas , Gabexato/uso terapéutico , Antineoplásicos/uso terapéutico , Tegafur/uso terapéutico , Japón , Uracilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA