Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2309656, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686693

RESUMEN

Bi/CeO2 (BC-x) photocatalysts are successfully prepared by solvothermal loading Bi nanoparticles and Bi-doped CeO2 derived by Ce-MOF (Ce-BTC). Formaldehyde gas (HCHO) and tetracycline hydrochloride (HTC) are used to evaluate the photocatalytic activity of the synthesized Bi/CeO2. For BC-1000 photocatalyst, the degradation of HTC by 420 nm < λ < 780 nm light reaches 91.89% for 90 min, and HCHO by 350 nm < λ < 780 nm light reaches 94.66% for 120 min. The photocatalytic cycle experiments prove that BC-1000 has good cyclic stability and repeatability. The results of photoluminescence spectra, fluorescence lifetime, photocurrent response, and electrochemical impedance spectroscopy showed that the SPR (Surface Plasmon Resonance) effect of Bi nanoparticles acted as a bridge and promoted electron transfer and enhanced the response-ability of Bi/CeO2 to visible light. Bi-doping produced more oxygen vacancies to provide adsorption sites for adsorbing oxygen and generated more ·O2 - thus promoting photocatalytic reactions. The mechanism of photocatalytic degradation is analyzed in detail utilizing active free radical capture experiments and electron paramagnetic resonance (EPR) characterization. The experimental results indicate that ·O2 - and h+ active free radicals significantly promote the degradation of pollutants.

2.
Small ; : e2403517, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045902

RESUMEN

The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.

3.
Small ; 20(30): e2310808, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386193

RESUMEN

Developing catalysts with suitable adsorption energy for oxygen-containing intermediates and elucidating their internal structure-performance relationships are essential for the commercialization of Li-O2 batteries (LOBs), especially under high current densities. Herein, NiCo2O4-CeO2 heterostructure with a spontaneous built-in electric field (BIEF) is designed and utilized as a cathode catalyst for LOBs at high current density. The driving mechanism of electron pumping/accumulation at heterointerface is studied via experiments and density functional theory (DFT) calculations, elucidating the growth mechanism of discharge products. The results show that BIEF induced by work function difference optimizes the affinity for LiO2 and promotes the formation of nano-flocculent Li2O2, thus improving LOBs performance at high current density. Specifically, NiCo2O4-CeO2 cathode exhibits a large discharge capacity (9546 mAh g-1 at 4000 mA g-1) and high stability (>430 cycles at 4000 mA g-1), which are better than the majority of previously reported metal-based catalysts. This work provides a new method for tuning the nucleation and decomposition of Li2O2 and inspires the design of ideal catalysts for LOBs to operate at high current density.

4.
Small ; 20(34): e2402108, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38586916

RESUMEN

Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4  C.

5.
Small ; : e2404608, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177179

RESUMEN

Elaborated structural modulation of Pt-based artificial nanozymes can efficiently improve their catalytic activity and expand their applications in clinical diagnosis and biochemical sensing. Herein, a highly efficient dual-site peroxidase mimic composed of highly dispersed Pt and Mo atoms is reported. The obtained Mo-Pt/CeO2 exhibits exceptional peroxidase-like catalytic activity, with a Vmax as high as 34.16 × 10-8 m s-1, which is 37.5 times higher than that of the single-site counterpart. Mechanism studies suggest that the Mo atoms can not only serve as adsorption and activation sites for the H2O2 substrate but also regulate the charge density of Pt centers to promote the generation ability of •OH. As a result, the synergistic effect between the dual active sites significantly improves the catalytic efficiency. Significantly, the application of the Mo-Pt/CeO2 catalyst's excellent peroxidase-like activity is extended to various biochemical detection applications, including the trace detection of glucose and cysteine, as well as the assessment of antioxidants' antioxidant capacity. This work reveals the great potential of rational design dual-site active centers for constructing high-performance artificial nanozymes.

6.
Small ; 20(35): e2402726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651509

RESUMEN

Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.

7.
Small ; 20(2): e2305566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661354

RESUMEN

Regulating the built-in electric field (BEF) in the heterojunction is is a great challenge in developing high-efficiency photocatalysts. Herein, by tailoring the content of oxygen vacancies in the constituent reduction semiconductor (mesoporous CeO2-x ), a precise Fermi level (EF ) regulation of CeO2-x is realized, yielding an amplified EF gap and intensified BEF in the Cs3 Bi2 Br9 perovskite quantum dots/CeO2-x S-scheme heterojunction. Such an enhanced BEF offers a strong driving force for directional electron transfer, boosting charge separation in the S-scheme heterojunction. As a result, the optimized Cs3 Bi2 Br9 /CeO2-x heterojunction delivers a remarkable CO2 conversion efficiency, with an impressive CO production rate of 80.26 µmol g-1  h-1 and a high selectivity of 97.6%. The S-scheme charge transfer mode is corroborated comprehensively by density functional theory (DFT) calculations, in situ X-ray photoelectron spectroscopy (XPS), and photo-irradiated Kelvin probe force microscopy (KPFM). Moreover, diffuse reflectance infrared Fourier transform spectra (DRIFTS) and theoretical calculations are conducted cooperatively to reveal the CO2 photoreduction pathway.

8.
Small ; 20(34): e2401032, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38618652

RESUMEN

CeO2, particularly in the shape of rod, has recently gained considerable attention for its ability to mimic peroxidase (POD) and haloperoxidase (HPO). However, this multi-enzyme activities unavoidably compete for H2O2 affecting its performance in relevant applications. The lack of consensus on facet distribution in rod-shaped CeO2 further complicates the establishment of structure-activity correlations, presenting challenges for progress in the field. In this study, the HPO-like activity of rod-shaped CeO2 is successfully enhanced while maintaining its POD-like activity through a facile post-calcination method. By studying the spatial distribution of these two activities and their exclusive H2O2 activation pathways on CeO2 surfaces, this study finds that the increased HPO-like activity originated from the newly exposed (111) surface at the tip of the shortened rods after calcination, while the unchanged POD-like activity is attributed to the retained (110) surface in their lateral area. These findings not only address facet distribution discrepancies commonly reported in the literature for rod-shaped CeO2 but also offer a simple approach to enhance its antibacterial performance. This work is expected to provide atomic insights into catalytic correlations and guide the design of nanozymes with improved activity and reaction specificity.


Asunto(s)
Cerio , Peróxido de Hidrógeno , Cerio/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Peroxidasa/metabolismo , Peroxidasa/química
9.
Small ; : e2400357, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778724

RESUMEN

The Fenton reaction, induced by the H2O2 formed during the oxygen reduction reaction (ORR) process leads to significant dissolution of Fe, resulting in unsatisfactory stability of the iron-nitrogen-doped carbon catalysts (Fe-NC). In this study, a strategy is proposed to improve the ORR catalytic activity while eliminating the effect of H2O2 by introducing CeO2 nanoparticles. Transmission electron microscopy and subsequent characterizations reveal that CeO2 nanoparticles are uniformly distributed on the carbon substrate, with atomically dispersed Fe single-atom catalysts (SACs) adjacent to them. CeO2@Fe-NC achieves a half-wave potential of 0.89 V and a limiting current density of 6.2 mA cm-2, which significantly outperforms Fe-NC and commercial Pt/C. CeO2@Fe-NC also shows a half-wave potential loss of only 1% after 10 000 CV cycles, which is better than that of Fe-NC (7%). Further, H2O2 elimination experiments show that the introduction of CeO2 significantly accelerate the decomposition of H2O2. In situ Raman spectroscopy results suggest that CeO2@Fe-NC significantly facilitates the formation of ORR intermediates compared with Fe-NC. The Zn-air batteries utilizing CeO2@Fe-NC cathodes exhibit satisfactory peak power density and open-circuit voltage. Furthermore, theoretical calculations show that the introduction of CeO2 enhances the ORR activity of Fe-NC SAC. This study provides insights for optimizing SAC-based electrocatalysts with high activity and stability.

10.
Small ; : e2404142, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148197

RESUMEN

As of the present time, the in-depth study of the structure-activity relationship between electronic configuration and CO2 photoreduction performance is often overlooked. Herein, a series of Cux species modified CeO2 nanodots are constructed in situ by flame spray pyrolysis (FSP) to achieve an efficient photocatalytic CO2-to-C2 conversion with an electron utilization of up to 142.5 µmol g-1. Through an in-depth study of the electronic behavior and catalytic pathways, it is found that the Cu0/Cu+ species in the coexistence state of Cu0/Cu+/Cu2+ can optimize the energy band structure, photocurrent stability, and provide a kinetic basis for the active surface catalytic reaction process that requires the conversion of multiple electrons into C2 products, which ultimately enhances the CO2-to-C2H6 photoreduction by 3.8-fold and that for CO2-to-C2H4 photoreduction by 5.2-fold. Besides, the Cu2+ species in the coexistence state of Cu0/Cu+/Cu2+ are able to regulate the electronic behavior and the choice of the catalytic pathway, enabling the transitions between CO2-to-C2H6 and CO2-to-C2H4. This work indicates that electronic configuration optimization is an effective strategy to significantly enhance the CO2 photoreduction performance and provides new ideas for the design and synthesis of high-performance heterostructure photocatalysts.

11.
Chemistry ; : e202402516, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168823

RESUMEN

On the way to carbon neutrality, directly catalyzing atmospheric CO2 into high-value chemicals might be an effective approach to mitigate the negative impacts of rising airborne CO2 concentrations. Here, we pioneer the investigation of the influence of the H2/CO2 partial pressure ratio (PPR) on air-level CO2 methanation. Using Ni/CeO2 as a case catalyst, increasing H2/CO2 PPR significantly improves low-temperature CO2 conversion and high-temperature CH4 selectivity, i.e., from 10 of H2/CO2 PPR on, CO2 is completely methanized at 250 °C, and nearly 100% CH4 selectivity is achieved at 400 °C. 100-hour stability tests demonstrate the practical application potential of Ni/CeO2 at 250 °C and 400 °C. In-situ DRIFTS reveal that reinforced formate pathway by increasing H2/CO2 PPR is responsible for the high CH4 yield. In contrast, even though the CO pathway dominated CO2 conversion on Ni is enhanced by rising H2/CO2 PPR, but at a high reaction temperature, the promoted CO desorption still leads to lower CH4 selectivity. This work offers deep insights into the direct air-level CO2 resourceization, contributing to the achievement of airborne CO2 reductions.

12.
Anal Biochem ; 692: 115574, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38782251

RESUMEN

Ascorbic acid (AA), a prominent antioxidant commonly found in human blood serum, serves as a biomarker for assessing oxidative stress levels. Therefore, precise detection of AA is crucial for swiftly diagnosing conditions arising from abnormal AA levels. Consequently, the primary aim of this research is to develop a sensitive and selective electrochemical sensor for accurate AA determination. To accomplish this aim, we used a novel nanocomposite comprised of CeO2-doped ZnO adorned on biomass-derived carbon (CeO2·ZnO@BC) as the active nanomaterial, effectively fabricating a glassy carbon electrode (GCE). Various analytical techniques were employed to scrutinize the structure and morphology features of the CeO2·ZnO@BC nanocomposite, ensuring its suitability as the sensing nanomaterial. This innovative sensor is capable of quantifying a wide range of AA concentrations, spanning from 0.5 to 1925 µM in a neutral phosphate buffer solution. It exhibits a remarkable sensitivity of 0.2267 µA µM-1cm-2 and a practical detection limit of 0.022 µM. Thanks to its exceptional sensitivity and selectivity, this sensor enables highly accurate determination of AA concentrations in real samples. Moreover, its superior reproducibility, repeatability, and stability underscore its reliability and robustness for AA quantification.


Asunto(s)
Ácido Ascórbico , Carbono , Cerio , Técnicas Electroquímicas , Nanocompuestos , Óxido de Zinc , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Nanocompuestos/química , Óxido de Zinc/química , Técnicas Electroquímicas/métodos , Cerio/química , Carbono/química , Humanos , Biomasa , Electrodos , Límite de Detección
13.
Artículo en Inglés | MEDLINE | ID: mdl-39186185

RESUMEN

The catalysts with three-dimensional porous (3DP) CeO2, LaFeO3 and SrTiO3 are synthesized by sol-gel method and chemical precipitation method. The resulting multi-component 3DP CeO2/LaFeO3/SrTiO3 composite material featured a high specific surface area (26.08 m2/g), which can provide more surface active sites to improve adsorption capacity and catalytic performance. The photocatalytic, Fenton-like, photo-Fenton-like performance of the catalyst are studied on decolorization of RhB under UV irradiation, respectively. 3DP CeO2/LaFeO3/SrTiO3 exhibits high catalytic performance. Compared with photocatalytic or Fenton-like performance, 3DP CeO2/LaFeO3/SrTiO3 catalyst exhibits higher photo-Fenton-like performance, facilitating efficient decolorization of the rhodamine B. Moreover, the initial reaction rate on decolorization of RhB with 3DP CeO2/LaFeO3/SrTiO3 is 10.55, 5.52, 3.67 and 1.51 times higher than that with SrTiO3, LaFeO3, 3DP CeO2 and 3DP CeO2/LaFeO3, respectively. Meanwhile, 3DP LaFeO3/CeO2/SrTiO3 has a wider pH usage range in the synergistic reaction. Finally, a catalytic mechanism for the decolorization of rhodamine B is proposed. The continuous cycling of Fe3+/Fe2+ and Ce4+/Ce3+ and the production of active substances are achieved under the photo-Fenton-like effect of the catalyst.

14.
Nanotechnology ; 35(45)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137791

RESUMEN

Herein, we fabricated nanoscale 2D CeO2sheet structure to develop a stable resistive gas sensor for detection of low concentration (ppm) level formaldehyde vapors. The fabricated CeO2nanosheets (NSs) showed an optical band gap of 3.53 eV and cubic fluorite crystal structure with enriched defect states. The formation of 2D NSs with well crystalline phases is clearly observed from high-resolution transmission electron microscope (HRTEM) images. The NSs have been shown tremendous blue-green emission related to large oxygen defects. A VOC sensing device based on fabricated two-dimensional NSs has been developed for the sensing of different VOCs. The device showed better sensing for formaldehyde compared with other VOCs (2-propanol, methanol, ethanol, and toluene). The response was found to be 4.35, with the response and recovery time of 71 s and 310 s, respectively. The device showed an increment of the recovery time (71 s to 100 s) with the decrement of the formaldehyde ppm (100 ppm to 20 ppm). Theoretical fittings provided the detection limit of formaldehyde ≈8.86 ± 0.45 ppm with sensitivity of 0.56 ± 0.05 ppm-1. The sensor device showed good reproducibility with excellent stability over the study period of 135 d, with a deviation of 1.8% for 100 ppm formaldehyde. The average size of the NSs (≈24 nm) calculated from HRTEM observation showed lower value than the calculated Debye length (≈44 nm) of the charge accumulation during VOCs sensing. Different defect states, interstitial and surface states in the CeO2NSs as observed from the Raman spectrum and emission spectrum are responsible for the formaldehyde sensing. This work offers an insight into 2D semiconductor-based oxide material for highly sensitive and stable formaldehyde sensors.

15.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513271

RESUMEN

The removal of pollutants from water bodies is crucial for the well-being of humanity and is a topic of global research. Researchers have turned their attention to green synthesized nanoparticles for wastewater treatment due to their eco-friendly nature, biocompatibility, and cost-effectiveness. This work demonstrates the efficient removal of organic dye and both gram-positive and gram-negative bacteria from water bodies using copper-doped cerium oxide nanoparticles synthesized withMurraya Koenigiiextract. Characterized via various methods, the 15% copper doped cerium oxide nanoparticles (Cu 15% NPs) exhibited maximum Congo red dye adsorption (98% degradation in 35 min). Kinetic analysis favoured a pseudo-second-order model, indicating the chemical nature of adsorption. Equilibrium adsorption isotherms aligned with the Langmuir model, indicating homogenous monolayer dye adsorption on the doped adsorbent. The maximum uptake of adsorbate,Qmobtained from Langmuir model for Cu 15% NPs was 193 mg g-1. The study also showed enhanced antibacterial activity againstBacillus subtilis, Staphylococcus aureus, Escherichia coliandPseudomonas aeruginosafor Cu-doped ceria, attributed to generation of reactive oxygen species (ROS) induced by the redox cycling between Ce3+and Ce4+. This substantiated that the green synthesized copper doped cerium oxide nanoparticles are potential candidates for adsorptive removal of Congo red dye and as antibacterial agents.


Asunto(s)
Cerio , Nanopartículas del Metal , Contaminantes Químicos del Agua , Rojo Congo , Cobre/química , Adsorción , Cinética , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Nanopartículas del Metal/química , Agua/química , Concentración de Iones de Hidrógeno
16.
Nanotechnology ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173656

RESUMEN

It is a challenge to improve the long-term durability of Pd-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, Pd/CeO2-C-T (T=800, 900 and 1000℃) hybrid catalysts with metal-support interaction are prepared from Ce-based metal organic framework (Ce-MOF) precursor. Abundant tiny CeO2 nanoclusters are produced to form nanorod structures with uniformly distributed carbon through a calcination process. Meanwhile, both carbon and CeO2 nanoclusters have good contact with the following deposited surfactant-free Pd nanoclusters. Benefited from the large specific surface area, good conductivity and structure integrity, Pd/CeO2-C-900 exhibits the best electrocatalytic ORR performance: onset potential of 0.968 V and half-wave potential of 0.857 V, outperforming those obtained on Pd/C counterpart. In addition, the half-wave potential only shifts 7 mV after 6000 cycles of accelerated durability testing, demonstrating robust durability.

17.
Environ Sci Technol ; 58(18): 8086-8095, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666813

RESUMEN

Secondary pollution remains a critical challenge for the catalytic destruction of chlorinated volatile organic compounds (CVOCs). By employing experimental studies and theoretical calculations, we provide valuable insights into the catalytic behaviors exhibited by ceria rods, cubes, and octahedra for monochloromethane (MCM) destruction, shedding light on the elementary reactions over facet-dependent CeO2. Our findings demonstrate that CeO2 nanorods with the (110) facet exhibit the best performance in MCM destruction, and the role of vacancies is mainly to form a longer distance (4.63 Å) of frustrated Lewis pairs (FLPs) compared to the stoichiometric surface, thereby enhancing the activation of MCM molecules. Subsequent molecular orbital analysis showed that the adsorption of MCM mainly transferred electrons from the 3σ and 4π* orbitals to the Ce 4f orbitals, and the activation was mainly caused by weakening of the 3σ bonding orbitals. Furthermore, isotopic experiments and theoretical calculations demonstrated that the hydrogen chloride generated is mainly derived from methyl in MCM rather than from water, and the primary function of water is to form excess saturated H on the surface, facilitating the desorption of generated hydrogen chloride.


Asunto(s)
Oxígeno , Catálisis , Oxígeno/química , Cerio/química , Adsorción , Compuestos Orgánicos Volátiles/química
18.
Environ Sci Technol ; 58(2): 1369-1377, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38048160

RESUMEN

An improved fundamental understanding of active site structures can unlock opportunities for catalysis from conceptual design to industrial practice. Herein, we present the computational discovery and experimental demonstration of a highly active surface-phosphorylated ceria catalyst that exhibits robust chlorine tolerance for catalysis. Ab initio molecular dynamics (AIMD) calculations and in situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) identified a predominantly HPO4 active structure on CeO2(110) and CeO2(111) facets at room temperature. Importantly, further elevating the temperature led to a unique hydrogen (H) atom hopping between coordinatively unsaturated oxygen and the adjacent P═O group of HPO4. Such a mobile H on the catalyst surface can effectively quench the chlorine radicals (Cl•) via an orientated reaction analogous to hydrogen atom transfer (HAT), enabling the surface-phosphorylated CeO2-supported monolithic catalyst to exhibit both expected activity and stability for over 68 days during a pilot test, catalyzing the destruction of a complex chlorinated volatile organic compound industrial off-gas.


Asunto(s)
Cloro , Oxígeno , Catálisis , Temperatura , Hidrógeno
19.
Environ Sci Technol ; 58(27): 12201-12211, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934498

RESUMEN

The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.


Asunto(s)
Monóxido de Carbono , Oxidación-Reducción , Catálisis , Monóxido de Carbono/química , Emisiones de Vehículos , Platino (Metal)/química , Cerio/química
20.
Environ Res ; 252(Pt 1): 118785, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555094

RESUMEN

The cube architecture associated with the CeO2 nanoflowers (NFs) that generated, which had an average crystallization width of 7 nm, has been confirmed by X-ray crystallographic investigations. The method used is environmentally acceptable since it converts wasted banana peel extracts into CeO2 nanoflower. On the basis of artwork obtained from a High-Resolution Transmission Electron Microscope (HR-TEM), CeO2 nanoparticles have been observed to possess a spherical shape and an average particle diameter of 21 nm. To take the purpose of this study, green-fabricated CeO2-NFs were used to investigate the photocatalytic oxidation of methyl orange (MO) dye when exposed to sunshine. CeO2 nanofibers showed a degradation performance of 98% when compared to methyl orange dye. Evidently is a possibility that this may be caused by the presence of CeO2 nanoflowers, whereby enhance the interaction of electrons, which are holes dissolution, and adherence. Upon a single day of being exposed, the biocidal potential was tested against both gram-positive and gram-negative bacteria, including E. coli, B. cereus, and S. aureus, among others. Due to the fact that its 32 mm minimum inhibitory concentration (MIC) for B. cereus was the highest among conventional medicines. As shown by the extraordinary capabilities of WBP@CeO2 tiny particles, manipulating of flexible tiny particles to feed the purpose of achieving effective and customizable infections and dermatologist advancements is really stunning.


Asunto(s)
Antibacterianos , Compuestos Azo , Cerio , Musa , Extractos Vegetales , Musa/química , Cerio/química , Cerio/farmacología , Compuestos Azo/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Colorantes/química , Catálisis , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA