Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205947

RESUMEN

Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.


Asunto(s)
Drosophila , Uniones Intercelulares , Animales , División Celular , Desarrollo Embrionario , Células Epiteliales
2.
Semin Cell Dev Biol ; 156: 44-57, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37400292

RESUMEN

Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.


Asunto(s)
Apoptosis , Células Epiteliales , Células Epiteliales/metabolismo , Muerte Celular , Apoptosis/fisiología
3.
Development ; 150(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602491

RESUMEN

Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late-stage development, there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional, whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, response to the Notch signal is age dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo1, such that premature activation of Piezo1 leads to early extrusion while blocking Piezo1 leads to MCC maintenance. Distinct mechanisms for MCC loss underlie the importance of their removal during epithelial remodeling.


Asunto(s)
Transducción de Señal , Animales , Epitelio , Xenopus laevis
4.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593401

RESUMEN

Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion.


Asunto(s)
Fisura del Paladar , Hueso Paladar , Actomiosina/metabolismo , Animales , Apoptosis , Células Epiteliales/metabolismo , Epitelio/metabolismo , Mamíferos , Hueso Paladar/metabolismo
5.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861219

RESUMEN

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Asunto(s)
Antígenos CD/metabolismo , Enfermedad de Crohn/metabolismo , Enterocitos/fisiología , Granzimas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Linfocitos Intraepiteliales/fisiología , Adolescente , Adulto , Animales , Antígenos CD/genética , Apoptosis , Cadherinas/metabolismo , Caspasa 3/metabolismo , Enfermedad de Crohn/patología , Duodeno/patología , Enterocitos/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Íleon/patología , Cadenas alfa de Integrinas/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/patología , Microscopía Intravital , Yeyuno/inmunología , Yeyuno/patología , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
6.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161061

RESUMEN

The replacement of cells is a common strategy during animal development. In the Drosophila pupal abdomen, larval epidermal cells (LECs) are replaced by adult progenitor cells (histoblasts). Previous work showed that interactions between histoblasts and LECs result in apoptotic extrusion of LECs during early pupal development. Extrusion of cells is closely preceded by caspase activation and is executed by contraction of a cortical actomyosin cable. Here, we identify a population of LECs that extrudes independently of the presence of histoblasts during late pupal development. Extrusion of these LECs is not closely preceded by caspase activation, involves a pulsatile medial actomyosin network, and correlates with a developmental time period when mechanical tension and E-cadherin turnover at adherens junctions is particularly high. Our work reveals a developmental switch in the cell extrusion mechanism that correlates with changes in tissue mechanical properties.


Asunto(s)
Abdomen/embriología , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Células Epidérmicas/citología , Epidermis/embriología , Uniones Adherentes/metabolismo , Animales , Animales Modificados Genéticamente , Cadherinas/metabolismo , Caspasas/metabolismo , Proliferación Celular , Larva/citología , Pupa/citología , Estrés Mecánico
7.
Development ; 147(22)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33028612

RESUMEN

Cell extrusion is a crucial regulator of epithelial tissue development and homeostasis. Epithelial cells undergoing apoptosis, bearing pathological mutations or possessing developmental defects are actively extruded toward elimination. However, the molecular mechanisms of Drosophila epithelial cell extrusion are not fully understood. Here, we report that activation of the conserved Hippo (Hpo) signaling pathway induces both apical and basal cell extrusion in the Drosophila wing disc epithelia. We show that canonical Yorkie targets Diap1, Myc and Cyclin E are not required for either apical or basal cell extrusion induced by activation of this pathway. Another target gene, bantam, is only involved in basal cell extrusion, suggesting novel Hpo-regulated apical cell extrusion mechanisms. Using RNA-seq analysis, we found that JNK signaling is activated in the extruding cells. We provide genetic evidence that JNK signaling activation is both sufficient and necessary for Hpo-regulated cell extrusion. Furthermore, we demonstrate that the ETS-domain transcription factor Ets21c, an ortholog of proto-oncogenes FLI1 and ERG, acts downstream of JNK signaling to mediate apical cell extrusion. Our findings reveal a novel molecular link between Hpo signaling and cell extrusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Transducción de Señal/fisiología , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Discos Imaginales/citología , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Transactivadores/genética , Transactivadores/metabolismo , Alas de Animales/citología , Proteínas Señalizadoras YAP
8.
Development ; 147(7)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32156754

RESUMEN

Epithelial tissues undergo cell turnover both during development and for homeostatic maintenance. Cells that are no longer needed are quickly removed without compromising the barrier function of the tissue. During metamorphosis, insects undergo developmentally programmed tissue remodeling. However, the mechanisms that regulate this rapid tissue remodeling are not precisely understood. Here, we show that the temporal dynamics of endocytosis modulate physiological cell properties to prime larval epidermal cells for cell elimination. Endocytic activity gradually reduces as tissue remodeling progresses. This reduced endocytic activity accelerates cell elimination through the regulation of Myosin II subcellular reorganization, junctional E-cadherin levels, and caspase activation. Whereas the increased Myosin II dynamics accelerates cell elimination, E-cadherin plays a protective role against cell elimination. Reduced E-cadherin is involved in the amplification of caspase activation by forming a positive-feedback loop with caspase. These findings reveal the role of endocytosis in preventing cell elimination and in the cell-property switching initiated by the temporal dynamics of endocytic activity to achieve rapid cell elimination during tissue remodeling.


Asunto(s)
Drosophila , Endocitosis/fisiología , Epidermis/fisiología , Epitelio/fisiología , Metamorfosis Biológica/fisiología , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Cadherinas/genética , Cadherinas/metabolismo , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/fisiología , Drosophila/citología , Drosophila/fisiología , Embrión no Mamífero , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Miosina Tipo II/genética , Miosina Tipo II/metabolismo
9.
Dev Biol ; 477: 1-10, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984304

RESUMEN

Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula , Forma de la Célula , Animales , Apoptosis/fisiología , Fenómenos Biomecánicos , Competencia Celular , Homeostasis , Humanos , Células Madre/fisiología
10.
Development ; 146(13)2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31175121

RESUMEN

The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium.


Asunto(s)
Actinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular , Corazón/embriología , Pericardio/citología , Pericardio/embriología , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Movimiento Celular/genética , Embrión no Mamífero , Miocardio/citología , Organogénesis/genética , Transducción de Señal/fisiología , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(48): 24108-24114, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31699818

RESUMEN

Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell-substratum contacts. Overall, this study shows that a balance between cell contractility and cell-cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.


Asunto(s)
Neoplasias de la Mama/metabolismo , Isoenzimas/fisiología , Proteína Quinasa C/fisiología , Vinculina/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Separación Celular , Humanos , Uniones Intercelulares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Invasividad Neoplásica , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
12.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456978

RESUMEN

The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Animales , Células Epiteliales/metabolismo , Homeostasis , Inflamación/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones
13.
Biochem Biophys Res Commun ; 526(2): 375-380, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32222280

RESUMEN

Receptor tyrosine kinase EphA7 is specifically expressed in otic region in Xenopus early development. However, its role in otocyst development remains unknown. Knockdown of EphA7 by a specific morpholino oligonucleotide (MO) reduced the size of the otocyst and triggered otic epithelial cell extrusion. Interestingly, EphA7 depletion attenuated the membrane level of the tight junction protein Claudin6 (CLDN6). Utilizing the Cldn6 MO, we further confirmed that CLDN6 attenuation also led to otic epithelial cell extrusion. Our work suggested that EphA7 modulates the otic epithelial homeostasis through stabilizing the CLDN6 membrane level.


Asunto(s)
Claudinas/genética , Regulación del Desarrollo de la Expresión Génica , Receptor EphA7/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Animales , Técnicas de Silenciamiento del Gen , Homeostasis , Xenopus laevis/genética
14.
Genesis ; 56(4): e23104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603589

RESUMEN

Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F-actin-binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F-actin, a function that appears to be counteracted by PKC activation.


Asunto(s)
Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/fisiología , Neurulación/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Polaridad Celular/fisiología , Embrión de Pollo , Pollos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Placa Neural/metabolismo , Neurulación/genética , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Quinasa C/fisiología , Transducción de Señal
15.
J Cell Sci ; 128(5): 1011-22, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25588837

RESUMEN

LKB1/PAR-4 is essential for the earliest polarization steps in Caenorhabditis elegans embryos and Drosophila oocytes. Although LKB1 (also known as STK11) is sufficient to initiate polarity in a single mammalian intestinal epithelial cell, its necessity in the formation and maintenance of mammalian epithelia remains unclear. To address this, we completely remove LKB1 from mouse embryos by generating maternal-zygotic Lkb1 mutants and find that it is dispensable for polarity and epithelia formation in the early embryo. Instead, loss of Lkb1 leads to the extrusion of cells from blastocyst epithelia that remain alive and can continue to divide. Chimeric analysis shows that Lkb1 is cell-autonomously required to prevent these extrusions. Furthermore, heterozygous loss of Cdh1 exacerbates the number of extrusions per blastocyst, suggesting that LKB1 has a role in regulating adherens junctions in order to prevent extrusion in epithelia.


Asunto(s)
Uniones Adherentes/metabolismo , Blastocisto/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Uniones Adherentes/genética , Animales , Blastocisto/citología , Caenorhabditis elegans , Proteínas Cdh1/genética , Drosophila melanogaster , Epitelio/embriología , Femenino , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genética
16.
Am J Physiol Cell Physiol ; 309(3): C190-201, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26040895

RESUMEN

The highly conserved exocyst protein complex regulates polarized exocytosis of subsets of secretory vesicles. A previous study reported that shRNA knockdown of an exocyst central subunit, Sec10 (Sec10-KD) in Madin-Darby canine kidney (MDCK) cells disrupted primary cilia assembly and 3D cyst formation. We used three-dimensional collagen cultures of MDCK cells to further investigate the mechanisms by which Sec10 and the exocyst regulate epithelial polarity, morphogenesis, and homeostasis. Sec10-KD cysts initially demonstrated undisturbed lumen formation although later displayed significantly fewer and shorter primary cilia than controls. Later in cystogenesis, control cells maintained normal homeostasis, while Sec10-KD cysts displayed numerous apoptotic cells extruded basally into the collagen matrix. Sec10-KD MDCK cells were also more sensitive to apoptotic triggers than controls. These phenotypes were reversed by restoring Sec10 expression with shRNA-resistant human Sec10. Apico-basal polarity appeared normal in Sec10-KD cysts, whereas mitotic spindle angles differed significantly from controls, suggesting a planar cell polarity defect. In addition, analysis of renal tubules in a newly generated kidney-specific Sec10-knockout mouse model revealed significant defects in primary cilia assembly and in the targeted renal tubules; abnormal epithelial cell extrusion was also observed, supporting our in vitro results. We hypothesize that, in Sec10-KD cells, the disrupted exocyst activity results in increased apoptotic sensitivity through defective primary cilia signaling and that, in combination with an increased basal cell extrusion rate, it affects epithelial barrier integrity and homeostasis.


Asunto(s)
Apoptosis/fisiología , Células Epiteliales/fisiología , Homeostasis/fisiología , Riñón/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Proliferación Celular/fisiología , Perros , Humanos , Riñón/citología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Front Oncol ; 14: 1459313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351360

RESUMEN

Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.

18.
Adv Sci (Weinh) ; : e2401573, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291385

RESUMEN

In vertebrates, many organs, such as the kidney and the mammary gland form ductal structures based on the folding of epithelial sheets. The development of these organs relies on coordinated sorting of different cell lineages in both time and space, through mechanisms that remain largely unclear. Tissues are composed of several cell types with distinct biomechanical properties, particularly at cell-cell and cell-substrate boundaries. One hypothesis is that adjacent epithelial layers work in a coordinated manner to shape the tissue. Using in vitro experiments on model epithelial cells, differential expression of atypical Protein Kinase C iota (aPKCi), a key junctional polarity protein, is shown to reinforce cell epithelialization and trigger sorting by tuning cell mechanical properties at the tissue level. In a broader perspective, it is shown that in a heterogeneous epithelial monolayer, in which cell sorting occurs, forces arising from epithelial cell growth under confinement by surrounding cells with different biomechanical properties are sufficient to promote collective cell extrusion and generate emerging 3D organization related to spheroids and buds. Overall, this research sheds light on the role of aPKCi and the biomechanical interplay between distinct epithelial cell lineages in shaping tissue organization, providing insights into the understanding of tissue and organ development.

19.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005335

RESUMEN

Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.

20.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559094

RESUMEN

Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency, that contribute to nearly every tissue and organ system throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube, during neurulation. Their delamination and migration are crucial events in embryo development as the differentiation of NCC is heavily influenced by their final resting locations. Previous work in avian and aquatic species has shown that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these stem and progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular drivers facilitating NCC delamination in mammals are poorly understood. We performed live timelapse imaging of NCC delamination in mouse embryos and discovered a group of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with most delaminating NCC. High magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed these round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, we demonstrate that cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1, a key regulator of the live cell extrusion pathway, revealing a new role for PIEZO1 in neural crest cell development. Our results elucidating the cellular and molecular dynamics orchestrating NCC delamination support a model in which high pressure and tension in the neuroepithelium results in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT. This model has broad implications for our understanding of cell delamination in development and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA