Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.601
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2213480120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36952380

RESUMEN

Peroxidase-like catalysts are safe and low-cost candidates to tackle the dilemma in constructing sustainable cathodic heterogeneous electro-Fenton (CHEF) catalysts for water purification, but the elusive structure-property relationship of enzyme-like catalysts constitutes a pressing challenge for the advancement of CHEF processes in practically relevant water and wastewater treatment. Herein, we probe the origins of catalytic efficiency in the CHEF process by artificially tailoring the peroxidase-like activity of Fe3O4 through a series of acetylated chitosan-based hydrogels, which serve as ecofriendly alternatives to traditional carbon shells. The optimized acetylated chitosan wrapping Fe3O4 hydrogel on the cathode shows an impressive activity and stability in CHEF process, overcoming the complicated and environmentally unfavored procedures in the electro-Fenton-related processes. Structural characterizations and theoretical calculations reveal that the amide group in chitosan can modulate the intrinsic redox capacity of surficial Fe sites on Fe3O4 toward CHEF catalysis via the neutral hydrogen bond. This work provides a sustainable path and molecule-level insight for the rational design of high-efficiency CHEF catalysts and beyond.

2.
Rev Physiol Biochem Pharmacol ; 184: 121-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35266054

RESUMEN

Chitosan is a natural polysaccharide widespread in nature. It has many unique and attractive properties for the pharmaceutical field: it is biodegradable, safe, hypoallergenic, biocompatible with the body, free of toxicity, with proven anticholesterolemic, antibacterial, and antimycotic action. In this review we highlighted the physical, chemical, mechanical, mucoadhesive, etc. properties of chitosan to be taken into account when obtaining various pharmaceutical forms. The methods by which the pharmaceutical forms based on chitosan are obtained are very extensive, and in this study only the most common ones were presented.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Preparaciones Farmacéuticas
3.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990493

RESUMEN

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Asunto(s)
Melanoma , MicroARNs , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , MicroARNs/farmacología
4.
Nano Lett ; 24(17): 5214-5223, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649327

RESUMEN

Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.


Asunto(s)
Barrera Hematoencefálica , Quitosano , Portadores de Fármacos , Accidente Cerebrovascular Isquémico , Nanopartículas , Sirolimus , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Ratones , Quitosano/química , Portadores de Fármacos/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Sirolimus/farmacología , Sirolimus/química , Sirolimus/uso terapéutico , Nanopartículas/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Polisacáridos/química , Polisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sulfatos/química , Sulfatos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo
5.
Nano Lett ; 24(22): 6665-6672, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767991

RESUMEN

Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.

6.
Curr Issues Mol Biol ; 46(4): 3729-3740, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38666962

RESUMEN

Despite present antiviral agents that can effectively work against HIV-1 replication, side effects and drug resistance have pushed researchers toward novel approaches. In this context, there is a continued focus on discovering new and more effective antiviral compounds, particularly those that have a natural origin. Polysaccharides are known for their numerous bioactivities, including inhibiting HIV-1 infection and replication. In the present study, phosphorylated chitosan oligosaccharides (PCOSs) were evaluated for their anti-HIV-1 potential in vitro. Treatment with PCOSs effectively protected cells from HIV-1-induced lytic effects and suppressed the production of HIV-1 p24 protein. In addition, results show that PCOSs lost their protective effect upon post-infection treatment. According to the results of ELISA, PCOSs notably disrupted the binding of HIV-1 gp120 protein to T cell surface receptor CD4, which is required for HIV-1 entry. Overall, the results point out that PCOSs might prevent HIV-1 infection at the entry stage, possibly via blocking the viral entry through disruption of virus-cell fusion. Nevertheless, the current results only present the potential of PCOSs, and further studies to elucidate its action mechanism in detail are needed to employ phosphorylation of COSs as a method to develop novel antiviral agents.

7.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656455

RESUMEN

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Asunto(s)
Alginatos , Anticuerpos Antivirales , Quitosano , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Animales , Administración Oral , Virus de la Diarrea Epidémica Porcina/inmunología , Alginatos/administración & dosificación , Quitosano/administración & dosificación , Ratones , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Porcinos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Femenino , Geles/administración & dosificación , Ratones Endogámicos BALB C , Interferón gamma/inmunología , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación
8.
Mol Med ; 30(1): 7, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200442

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS: Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS: Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION: GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.


Asunto(s)
Quitosano , Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Ratas , Hidrogeles , Degeneración del Disco Intervertebral/terapia , Microesferas , Células Madre
9.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600497

RESUMEN

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Asunto(s)
Benzotiazoles , Quitosano , Cumarinas , Nanopartículas , Ácidos Sulfónicos , Ácido Fólico/química , Nanopartículas/química , Antioxidantes/farmacología , Lípidos , Portadores de Fármacos/química
10.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877427

RESUMEN

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Asunto(s)
Quitosano , Plomo , Estrés Oxidativo , Vicia faba , Vicia faba/efectos de los fármacos , Vicia faba/genética , Vicia faba/metabolismo , Plomo/metabolismo , Plomo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Quitosano/farmacología , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética
11.
Small ; 20(1): e2304196, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665232

RESUMEN

Nanofiber is the critical building block for many biological systems to perform various functions. Artificial assembly of molecules into nanofibers in a controllable and reversible manner will create "smart" functions to mimic those of their natural analogues and fabricate new functional materials, but remains an open challenge especially for nature macromolecules. Herein, the controllable and reversible assembly of nanofiber (CSNF) from natural macromolecules with oppositely charged groups are successfully realized by protonation and deprotonation of charged groups. By controlling the electrostatic interaction via protonation and deprotonation, the size and morphology of the assembled nanostructures can be precisely controlled. A strong electrostatic interaction contributes to large nanofiber with high strength, while poor electrostatic interaction produces finer nanofiber or nanoparticle. And especially, the assembly, disassembly, and reassembly of the nanofiber occurs reversibly through protonation and deprotonation, thereby paving a new way for precisely controlling the assembly process and structure of nanofiber. The reversible assembly allows the nanostructure to dynamically reorganize in response to subtle perturbation of environment. The as-prepared CSNF is mechanical strong and can be used as a nano building block to fabricate high-strength film, wire, and straw. This study offers many opportunities for the biomimetic synthesis of new functional materials.

12.
Small ; : e2402334, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659186

RESUMEN

Inert inorganic nano-building blocks, such as carbon nanotubes (CNTs) and boron nitride (BN) nanosheets, possess excellent physicochemical properties. However, it remains challenging to build aerogels with these inert nanomaterials unless they are chemically modified or compounded with petrochemical polymers, which affects their intrinsic properties and is usually not environmentally friendly. Here, a universal biomacromolecule-enabled assembly strategy is proposed to construct aerogels with 90 wt% ultrahigh inorganic loading. The super-high inorganic content is beneficial for exploiting the inherent properties of inert nanomaterials in multifunctional applications. Taking chitosan-CNTs aerogel as a proof-of-concept demonstration, it delivers sensitive pressure response as a pressure sensor, an ultrahigh sunlight absorption (94.5%) raising temperature under light (from 25 to 71 °C within 1 min) for clean-up of crude oil spills, and superior electromagnetic interference shielding performance of up to 68.9 dB. This strategy paves the way for the multifunctional application of inert nanomaterials by constructing aerogels with ultrahigh inorganic loading.

13.
Small ; 20(26): e2310194, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279612

RESUMEN

Spinal cord injury (SCI) often leads to cell death, vascular disruption, axonal signal interruption, and permanent functional damage. Currently, there are no clearly effective therapeutic options available for SCI. Considering the inhospitable SCI milieu typified by ischemia, hypoxia, and restricted neural regeneration, a novel injectable hydrogel system containing conductive black phosphorus (BP) nanosheets within a lipoic acid-modified chitosan hydrogel matrix (LAMC) is explored. The incorporation of tannic acid (TA)-modified BP nanosheets (BP@TA) into the LAMC hydrogel matrix significantly improved its conductivity. Further, by embedding a bicyclodextrin-conjugated tazarotene drug, the hydrogel showcased amplified angiogenic potential in vitro. In a rat model of complete SCI, implantation of LAMC/BP@TA hydrogel markedly improved the recovery of motor function. Immunofluorescence evaluations confirmed that the composite hydrogel facilitated endogenous angiogenesis and neurogenesis at the injury site. Collectively, this work elucidates an innovative drug-incorporated hydrogel system enriched with BP, underscoring its potential to foster vascular and neural regeneration.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Fósforo , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Animales , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Nerviosa/efectos de los fármacos , Fósforo/química , Ratas , Ratas Sprague-Dawley , Nanoestructuras/química , Neovascularización Fisiológica/efectos de los fármacos , Inyecciones
14.
Small ; : e2310689, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421135

RESUMEN

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

15.
Small ; 20(27): e2309600, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38403846

RESUMEN

Constructing a stable and robust solid electrolyte interphase (SEI) has a decisive influence on the charge/discharge kinetics of lithium-ion batteries (LIBs), especially for silicon-based anodes which generate repeated destruction and regeneration of unstable SEI films. Herein, a facile way is proposed to fabricate an artificial SEI layer composed of lithiophilic chitosan on the surface of two-dimensional siloxene, which has aroused wide attention as an advanced anode for LIBs due to its special characteristics. The optimized chitosan-modified siloxene anode exhibits an excellent reversible cyclic stability of about 672.6 mAh g-1 at a current density of 1000 mA g-1 after 200 cycles and 139.9 mAh g-1 at 6000 mA g-1 for 1200 cycles. Further investigation shows that a stable and LiF-rich SEI film is formed and can effectively adhere to the surface during cycling, redistribute lithium-ion flux, and enable a relatively homogenous lithium-ion diffusion. This work provides constructive guidance for interface engineering strategy of nano-structured silicon anodes.

16.
BMC Microbiol ; 24(1): 21, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216871

RESUMEN

BACKGROUND: As antibiotics and chemotherapeutics are no longer as efficient as they once were, multidrug resistant (MDR) pathogens and cancer are presently considered as two of the most dangerous threats to human life. In this study, Selenium nanoparticles (SeNPs) biosynthesized by Streptomyces parvulus MAR4, nano-chitosan (NCh), and their nanoconjugate (Se/Ch-nanoconjugate) were suggested to be efficacious antimicrobial and anticancer agents. RESULTS: SeNPs biosynthesized by Streptomyces parvulus MAR4 and NCh were successfully achieved and conjugated. The biosynthesized SeNPs were spherical with a mean diameter of 94.2 nm and high stability. Yet, Se/Ch-nanoconjugate was semispherical with a 74.9 nm mean diameter and much higher stability. The SeNPs, NCh, and Se/Ch-nanoconjugate showed significant antimicrobial activity against various microbial pathogens with strong inhibitory effect on their tested metabolic key enzymes [phosphoglucose isomerase (PGI), pyruvate dehydrogenase (PDH), glucose-6-phosphate dehydrogenase (G6PDH) and nitrate reductase (NR)]; Se/Ch-nanoconjugate was the most powerful agent. Furthermore, SeNPs revealed strong cytotoxicity against HepG2 (IC50 = 13.04 µg/ml) and moderate toxicity against Caki-1 (HTB-46) tumor cell lines (IC50 = 21.35 µg/ml) but low cytotoxicity against WI-38 normal cell line (IC50 = 85.69 µg/ml). Nevertheless, Se/Ch-nanoconjugate displayed substantial cytotoxicity against HepG2 and Caki-1 (HTB-46) with IC50 values of 11.82 and 7.83 µg/ml, respectively. Consequently, Se/Ch-nanoconjugate may be more easily absorbed by both tumor cell lines. However, it exhibited very low cytotoxicity on WI-38 with IC50 of 153.3 µg/ml. Therefore, Se/Ch-nanoconjugate presented the most anticancer activity. CONCLUSION: The biosynthesized SeNPs and Se/Ch-nanoconjugate are convincingly recommended to be used in biomedical applications as versatile and potent antimicrobial and anticancer agents ensuring notable levels of biosafety, environmental compatibility, and efficacy.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Quitosano , Nanopartículas , Salicilatos , Selenio , Streptomyces , Humanos , Selenio/metabolismo , Selenio/toxicidad , Nanoconjugados , Quitosano/farmacología , Antiinfecciosos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología
17.
Microb Pathog ; 191: 106659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701959

RESUMEN

There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.


Asunto(s)
Antifúngicos , Quitosano , Fusarium , Nanopartículas , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Tioninas , Quitosano/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/genética , Fusarium/efectos de los fármacos , Fusarium/genética , Plantas Modificadas Genéticamente/genética , Antifúngicos/farmacología , Antifúngicos/metabolismo , Tioninas/genética , Tioninas/metabolismo , Aspergillus/genética , Aspergillus/efectos de los fármacos , Resistencia a la Enfermedad/genética , Árboles/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética
18.
Toxicol Appl Pharmacol ; 484: 116869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382713

RESUMEN

This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1ß (IL-1ß), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1ß, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.


Asunto(s)
Quitosano , Curcumina , Piretrinas , Piroptosis , Animales , Masculino , Ratas , Caspasa 1 , Caspasa 3 , Caspasa 8 , Curcumina/farmacología , Riñón , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Piretrinas/toxicidad , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa
19.
Chemistry ; 30(10): e202302762, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37870384

RESUMEN

Aerogels present a huge potential for removing organic dyes from printing and dyeing wastewater (PDW). However, the preparation of aerogels with multiple dye adsorption capabilities remains a challenge, as many existing aerogels are limited to adsorbing only a single type of dye. Herein, a composite aerogel (CG/T-rGO) with the addition of carboxymethyl chitosan, gelatin and tannic acid reduced graphene oxide (T-rGO) was synthesized by freeze-drying technology. The electrostatic interactions between dye molecular and GEL/CMCS (CG) networks, as well as the supramolecular interactions (H-bonds, electrostatic interactions and π-π stacks) between T-rGO, have endowed the aerogel with the ability to adsorb multiple types of dye, such as methylene blue (MB) and methyl orange (MO). Results exhibited that the prepared CG/T-rGO aerogel possessed strong mechanical strength and a porous 3D network structure with a porosity of 96.33 %. Using MB and MO as adsorbates, the adsorption capacity (88.2 mg/g and 66.6 mg/g, respectively) and the mechanism of the CG/T-rGO aerogel were investigated. The adsorption processes of aerogel for MB and MO were shown to follow the pseudo-second-order kinetic model and Langmuir isotherm model, indicating the chemical adsorption of a monolayer. The proposed aerogel in this work has promising prospects for dye removal from PDW.

20.
Chemistry ; 30(28): e202400021, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38477386

RESUMEN

The development of novel and effective drug delivery systems aimed at enhancing therapeutic profile and efficacy of therapeutic agents is a critical challenge in modern medicine. This study presents an intelligent drug delivery system based on self-assembled two-dimensional peptide nanosheets (2D PNSs). Leveraging the tunable properties of amino acid structures and sequences, we design a peptide with the sequence of Fmoc-FKKGSHC, which self-assembles into 2D PNSs with uniform structure, high biocompatibility, and excellent degradability. Covalent attachment of thiol-modified doxorubicin (DOX) drugs to 2D PNSs via disulfide bond results in the peptide-drug conjugates (PDCs), which is denoted as PNS-SS-DOX. Subsequently, the PDCs are encapsulated within the injectable, thermosensitive chitosan (CS) hydrogels for drug delivery. The designed drug delivery system demonstrates outstanding pH-responsiveness and sustained drug release capabilities, which are facilitated by the characteristics of the CS hydrogels. Meanwhile, the covalently linked disulfide bond within the PNS-SS-DOX is responsive to intracellular glutathione (GSH) within tumor cells, enabling controlled drug release and significantly inhibiting the cancer cell growth. This responsive peptide-drug conjugate based on a 2D peptide nanoplatform paves the way for the development of smart drug delivery systems and has bright prospects in the future biomedicine field.


Asunto(s)
Quitosano , Doxorrubicina , Liberación de Fármacos , Glutatión , Hidrogeles , Nanoestructuras , Péptidos , Hidrogeles/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Quitosano/química , Glutatión/química , Péptidos/química , Humanos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA