Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.552
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666864

RESUMEN

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Asunto(s)
Manduca , Animales , Herbivoria , Insectos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
2.
Curr Issues Mol Biol ; 46(8): 8685-8698, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194729

RESUMEN

The healing process after acne lesion extraction provides a miniature model to study skin wound repair mechanisms. In this study, we aimed to identify solutions for acne scars that frequently occur on our faces. We performed acne scar cytokine profiling and found that Interleukin 8 (IL8) and Tissue inhibitor of metalloproteinases 2 (TIMP2) were significant factors at the wounded site. The effect of chlorogenic acid and taurine on human epidermal cells and irritated human skin was investigated. Chlorogenic acid and taurine regulated IL8 and TIMP2 expression and accelerated keratinocyte proliferation. Moreover, tight junction protein expression was upregulated by chlorogenic acid and taurine synergistically. Further, these compounds modulated the expression of several inflammatory cytokines (IL1α, IL1ß, and IL6) and skin hydration related factor (hyaluronan synthase 3; HAS3). Thus, chlorogenic acid and taurine may exert their effects during the late stages of wound healing rather than the initial phase. In vivo experiments using SLS-induced wounds demonstrated the efficacy of chlorogenic acid and taurine treatment compared to natural healing, reduced erythema, and restored barrier function. Skin ultrasound analysis revealed their potential to promote denser skin recovery. Therefore, the wound-restoring effect of chlorogenic acid and taurine was exerted by suppression of inflammatory cytokines, and induction of cell proliferation, tight junction expression, and remodeling factors.

3.
Biochem Biophys Res Commun ; 734: 150672, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260206

RESUMEN

AIMS: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung condition, the cause of which remains unknown and for which no effective therapeutic treatment is currently available. Chlorogenic acid (CGA), a natural polyphenolic compound found in different plants and foods, has emerged as a promising agent due to its anti-inflammatory, antioxidant, and antifibrotic properties. However, the molecular mechanisms underlying the therapeutic effect of CGA in IPF remain unclear. The purpose of this study was to analyze the pharmacological impact and underlying mechanisms of CGA in IPF. MAIN METHODS: Using network pharmacology analysis, genes associated with IPF and potential molecular targets of CGA were identified through specialized databases, and a protein-protein interaction (PPI) network was constructed. Molecular docking was performed to accurately select potential therapeutic targets. To investigate the effects of CGA on lung histology and key gene expression, a murine model of bleomycin-induced lung fibrosis was used. KEY FINDINGS: Network pharmacology analysis identified 384 were overlapped between CGA and IPF. Key targets including AKT1, TP53, JUN, CASP3, BCL2, MMP9, NFKB1, EGFR, HIF1A, and IL1B were identified. Pathway analysis suggested the involvement of cancer, atherosclerosis, and inflammatory processes. Molecular docking confirmed the stable binding between CGA and targets. CGA regulated the expression mRNA of EGFR, MMP9, AKT1, BCL2 and IL1B and attenuated pulmonary fibrosis in the mouse model. SIGNIFICANCE: CGA is a promising multi-target therapeutic agent for IPF, which is supported by its efficacy in reducing fibrosis through the modulation of key pathways. This evidence provides a basis to further investigate CGA as an IPF potential treatment.

4.
New Phytol ; 243(1): 229-239, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666323

RESUMEN

The metabolism of massively accumulated chlorogenic acid is crucial for the successful germination of purple coneflower (Echinacea purpurea (L.) Menoch). A serine carboxypeptidase-like (SCPL) acyltransferase (chicoric acid synthase, CAS) utilizes chlorogenic acid to produce chicoric acid during germination. However, it seems that the generation of chicoric acid lags behind the decrease in chlorogenic acid, suggesting an earlier route of chlorogenic acid metabolism. We discovered another chlorogenic acid metabolic product, 3,5-dicaffeoylquinic acid, which is produced before chicoric acid, filling the lag phase. Then, we identified two additional typical clade IA SCPL acyltransferases, named chlorogenic acid condensing enzymes (CCEs), that catalyze the biosynthesis of 3,5-dicaffeoylquinic acid from chlorogenic acid with different kinetic characteristics. Chlorogenic acid inhibits radicle elongation in a dose-dependent manner, explaining the potential biological role of SCPL acyltransferases-mediated continuous chlorogenic acid metabolism during germination. Both CCE1 and CCE2 are highly conserved among Echinacea species, supporting the observed metabolism of chlorogenic acid to 3,5-dicaffeoylquinic acid in two Echinacea species without chicoric acid accumulation. The discovery of SCPL acyltransferase involved in the biosynthesis of 3,5-dicaffeoylquinic acid suggests convergent evolution. Our research clarifies the metabolism strategy of chlorogenic acid in Echinacea species and provides more insight into plant metabolism.


Asunto(s)
Aciltransferasas , Ácido Clorogénico , Echinacea , Germinación , Proteínas de Plantas , Semillas , Germinación/efectos de los fármacos , Ácido Clorogénico/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Echinacea/metabolismo , Echinacea/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Filogenia , Biocatálisis/efectos de los fármacos , Carboxipeptidasas
5.
Arch Biochem Biophys ; 753: 109913, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286353

RESUMEN

This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA. The presence of CGA also compensates the increase of dipole potential produced by Chol which can be explain as a consequence of the orientation of CGA molecule at the interphase opposing the cholesterol dipole moieties and water dipoles. This compensatory effect is less effective when lipids lack carbonyl groups (CO). When monolayers are composed by unsaturated PCs the Chol compensation is found at higher concentrations of CGA due to the direct interaction between CGA and Chol. These results suggest that cholesterol modulates the interaction and distribution of CGA in the lipid membrane, which may have implications for its biological activity.


Asunto(s)
Dimiristoilfosfatidilcolina , Fosfatidilcolinas , Ácido Clorogénico , Colesterol , Membrana Dobles de Lípidos , Propiedades de Superficie
6.
Anal Biochem ; 694: 115616, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38996900

RESUMEN

Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.


Asunto(s)
Ácido Clorogénico , Polímeros Impresos Molecularmente , Ácido Clorogénico/análisis , Ácido Clorogénico/química , Polímeros Impresos Molecularmente/química , Impresión Molecular , Adsorción , Polimerizacion , Extracción en Fase Sólida/métodos
7.
Virol J ; 21(1): 60, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454409

RESUMEN

INTRODUCTION: Chlorogenic acid, the primary active component in Chinese medicines like honeysuckle, exhibits anti-inflammatory and antiviral effects. It has been demonstrated that chlorogenic acid effectively prevents and treats Duck enteritis virus (DEV) infection. This study aims to further elucidate the mechanism by which chlorogenic acid prevents DEV infection. METHODS: Duck embryo fibroblast (DEF) cells were pre-treated with chlorogenic acid before being infected with DEV. Cell samples were collected at different time points for transcriptomic sequencing, while qPCR was used to detect the proliferation of DEV. Additionally, 30-day-old ducks were treated with chlorogenic acid, and their lymphoid organs were harvested for histopathological sections to observe pathological damage. The proliferation of DEV in the lymphoid organs was also detected using qPCR Based on the transcriptomic sequencing results, NF-κB1 gene was silenced by RNAi technology to analyze the effect of NF-κB1 gene on DEV proliferation. RESULTS: Compared to the viral infection group, DEF cells in the chlorogenic acid intervention group exhibited significantly reduced DEV load (P < 0.05). Transcriptomic sequencing results suggested that chlorogenic acid inhibited DEV proliferation in DEF cells by regulating NF-κB signaling pathway. The results of RNAi silencing suggested that in the three treatment groups, compared with the DEV experimental group, there was no significant difference in the effect of pre-transfection after transfection on DEV proliferation, while both the pre-transfection after transfection and the simultaneous transfection group showed significant inhibition on DEV proliferation Furthermore, compared to the virus infection group, ducks in the chlorogenic acid intervention group showed significantly decreased DEV load in their lymphoid organs (P < 0.05), along with alleviated pathological damage such as nuclear pyretosis and nuclear fragmentation. CONCLUSIONS: Chlorogenic acid effectively inhibits DEV proliferation in DEF and duck lymphatic organs, mitigates viral-induced pathological damage, and provides a theoretical basis for screening targeted drugs against DEV.


Asunto(s)
Mardivirus , Virus , Animales , Patos , Ácido Clorogénico/farmacología , Fibroblastos , Virus/genética , Análisis de Secuencia de ARN , Mardivirus/genética
8.
Arch Microbiol ; 206(2): 67, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236396

RESUMEN

Antibiotics are commonly used in clinical practice to treat bacterial infections. Due to the abuse of antibiotics, the emergence of drug-resistant strains, such as cefotaxime sodium-resistant Escherichia coli (CSR-EC), has aggravated the treatment of diseases caused by bacterial infections in the clinic. Therefore, discovering new drug candidates with unique mechanisms of action is imperative. Chlorogenic acid (CGA) is an active component of Yinhua Pinggan Granule, which has antioxidant and anti-inflammatory effects. We chose the CGA to explore its effects on PANoptosis in cultured macrophages infected with CSR-EC. In this study, we explored the protective impact of CGA on macrophage cell damage generated by CSR-EC infection and the potential molecular mechanistic consequences of post-infection therapy with CGA on the PANoptosis pathway. Our findings demonstrated that during CSR-EC-induced macrophage infection, CGA dramatically increased cell survival. CGA can inhibit pro-inflammatory cytokine expression of IL-1ß, IL-18, TNF-α, and IL-6. CGA decreased ROS generation and increased Nrf-2 expression at the gene and protein levels to lessen the cell damage and death brought on by CSR-EC infection. Additionally, we discovered that the proteins Caspase-3, Caspase-7, Caspase-8, Caspase-1, GSDMD, NLRP-3, RIPK-3, and MLKL were all inhibited by CGA. In summary, our research suggests that CGA is a contender for reducing lesions brought on by CSR-EC infections and that it can work in concert with antibiotics to treat CSR-EC infections clinically. However, further research on its mechanism of action is still needed.


Asunto(s)
Infecciones Bacterianas , Cefotaxima , Humanos , Cefotaxima/farmacología , Ácido Clorogénico/farmacología , Antibacterianos/farmacología , Escherichia coli/genética , Macrófagos
9.
Pharmacol Res ; 204: 107200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710241

RESUMEN

Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.


Asunto(s)
Antineoplásicos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Terapia Molecular Dirigida , Neoplasias , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
10.
Fish Shellfish Immunol ; 146: 109378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272333

RESUMEN

In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1ß were decreased. The IL-10 and TGF-ß were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Clorogénico/farmacología , Transducción de Señal , Suplementos Dietéticos , Dieta/veterinaria , Intestinos , Hígado/metabolismo , Inmunidad Innata , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis
11.
Mol Biol Rep ; 51(1): 798, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002019

RESUMEN

BACKGROUND: Hexavalent chromium (CrVI) is known to be a potentially hepatotoxic and nephrotoxic contaminant in humans and other animals, whose toxicity is associated with oxidative stress and inflammation. The aim of this study was to evaluate the potential protective effect of chlorogenic acid (CGA), which has known anti-inflammatory and antioxidant effects, on potassium dichromate (PDC)-induced acute hepatotoxicity and nephrotoxicity in rats. METHODS AND RESULTS: Thirty-six Wistar albino rats were treated with CGA (10, 20, or 40 mg/kg, intraperitoneally) and/or PDC (15 mg/kg/day, intraperitoneally) as a single dose. Serum, liver, and kidney tissues were examined biochemically, histopathologically, and immunohistochemically. Compared to the control group, a significant increase in interleukin-6 (IL-6) levels and a significant decrease in serum and renal reduced glutathione (GSH) levels, liver catalase (CAT), tumour necrosis factor-alpha (TNF-α), and interleukin 1ß (IL-1ß) levels were observed in the PDC group. The administration of PDC led to histopathological and immunohistochemical changes in rat liver and kidney tissues. With the administration of CGA, especially at the 10 mg/kg dosage, the above-mentioned parameters approached normal levels. CONCLUSIONS: CGA had antioxidant and anti-inflammatory effects that alleviated PDC-induced acute hepato- and nephrotoxicity.


Asunto(s)
Antioxidantes , Ácido Clorogénico , Riñón , Hígado , FN-kappa B , Estrés Oxidativo , Dicromato de Potasio , Ratas Wistar , Transducción de Señal , Animales , Dicromato de Potasio/toxicidad , Ácido Clorogénico/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Glutatión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Catalasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
12.
J Biochem Mol Toxicol ; 38(9): e23806, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39148258

RESUMEN

Exposure to fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) can cause oxidative damage and apoptosis in the human skin. Chlorogenic acid (CGA) is a bioactive polyphenolic compound with antioxidant, antifungal, and antiviral properties. The objective of this study was to identify the ameliorating impact of CGA that might protect human HaCaT cells against PM2.5. CGA significantly scavenged the reactive oxygen species (ROS) generated by PM2.5, attenuated oxidative cellular/organelle damage, mitochondrial membrane depolarization, and suppressed cytochrome c release into the cytosol. The application of CGA led to a reduction in the expression levels of Bcl-2-associated X protein, caspase-9, and caspase-3, while simultaneously increasing the expression of B-cell lymphoma 2. In addition, CGA was able to reverse the decrease in cell viability caused by PM2.5 via the inhibition of extracellular signal-regulated kinase (ERK). This effect was further confirmed by the use of the mitogen-activated protein kinase kinase inhibitor, which acted upstream of ERK. In conclusion, CGA protected keratinocytes from mitochondrial damage and apoptosis via ameliorating PM2.5-induced oxidative stress and ERK activation.


Asunto(s)
Apoptosis , Ácido Clorogénico , Queratinocitos , Estrés Oxidativo , Material Particulado , Ácido Clorogénico/farmacología , Humanos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Especies Reactivas de Oxígeno/metabolismo , Células HaCaT , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
13.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140945

RESUMEN

AIM: To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS: The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION: CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.


Asunto(s)
Ácido Clorogénico , Histamina , Histamina/análisis , Ácido Clorogénico/farmacología , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Simulación del Acoplamiento Molecular , Alimentos Marinos
14.
J Chem Ecol ; 50(1-2): 71-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030933

RESUMEN

Larvae of the Salicaceae-adapted Notodontidae have developed a unique mechanism to metabolize the chemical defenses of their Salicaceae host plants. Salicinoids and salicortinoids are enzymatically transformed into salicyloyl, benzoyl and mixed salicyloyl-benzoyl quinates. The source of quinates and benzoates was previously unknown. To elucidate the origin of quinate and benzoate in the metabolic end-products, we fed Cerura vinula caterpillars with 13C-labelled poplar defense compounds. Caffeoylquinic acids (CQAs), such as chlorogenic acid, neochlorogenic acid and their methyl esters, were identified as the source of quinates in the caterpillar's metabolism. Benzoyl substituents in the quinate end-products were found to originate from compounds such as tremulacin or trichocarpin. Salicaceae-adapted Notodontidae caterpillars have the ability to overcome their host plant's chemical defense by metabolizing CQAs and salicinoids, both abundant defense compounds in Salicacea plants, by a strategy of transformation and recombination. We believe that our study opens up avenues for understanding salicortinoid biotransformation at the enzymatic level.


Asunto(s)
Herbivoria , Mariposas Nocturnas , Ácido Quínico/análogos & derivados , Animales , Ácido Quínico/análisis , Hojas de la Planta/química
15.
Bioorg Chem ; 150: 107571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936048

RESUMEN

In recent years, Varicocele (VC) has been recognized as a common cause of male infertility that can be treated by surgery or drugs. How to reduce the damage of VC to testicular spermatogenic function has attracted extensive attention in recent years. Among them, overexpressed ROS and high levels of inflammation may play a key role in VC-induced testicular damage. As the key mediated innate immune pathways, cGAS-STING shaft under pathological conditions, such as in cell and tissue damage stress can be cytoplasmic DNA activation, induce the activation of NLRP3 inflammatory corpuscle, triggering downstream of the inflammatory cascade reaction. Chlorogenic acid (CGA), as a natural compound from a wide range of sources, has strong anti-inflammatory and antioxidant activities, and is a potential effective drug for the treatment of varicocele infertility. The aim of this study is to investigate the role of CGA in the spermatogenic dysfunction of the rat testis induced by VC and the potential mechanisms. The results of this study have shown that CGA gavage treatment ameliorated the pathological damage of seminiferous tubules, increased the number of sperm in the lumen, and increased the expression levels of Occludin and ZO-1, which indicated the therapeutic effect of CGA on spermatogenic dysfunction in the testis of VC rats. Meanwhile, the damage of mitochondrial structure was alleviated and the expression levels of ROS, NLRP3 and pro-inflammatory cytokines (IL-1ß, IL-6, IL-18) were significantly reduced in the testicular tissues of model rats after CGA treatment. In addition, we demonstrated for the first time the high expression status of cGAS and STING in testicular tissues of VC model rats, and this was ameliorated to varying degrees after CGA treatment. In conclusion, this study suggests that CGA can improve the spermatogenic function of the testis by reducing mitochondrial damage and inhibiting the activation of the cGAS-STING axis, inhibiting the activation of the NLRP3 inflammasome, and improving the inflammatory damage of the testis, highlighting the potential of CGA as a therapeutic agent for varicocele infertility.


Asunto(s)
Ácido Clorogénico , ADN Mitocondrial , Inflamasomas , Proteínas de la Membrana , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Nucleotidiltransferasas , Varicocele , Animales , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Ratas , Varicocele/tratamiento farmacológico , Varicocele/metabolismo , ADN Mitocondrial/metabolismo , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Sprague-Dawley , Espermatogénesis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Homeostasis/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular
16.
Appl Microbiol Biotechnol ; 108(1): 67, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183487

RESUMEN

Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.


Asunto(s)
Lonicera , Animales , Aeromonas hydrophila/genética , Ácido Clorogénico , Proteínas Hemolisinas , Reptiles , Antibacterianos/farmacología , Biopelículas
17.
Artículo en Inglés | MEDLINE | ID: mdl-39231804

RESUMEN

The molecular modification of chlorogenic acid (1) through γ-irradiation resulted in the formation of five new products: chlorogenosins A (2), B (3), C (4), D (5), and E (6) along with known compounds rosmarinosin B (7), protocatechuic acid (8), and protocatechuic aldehyde (9). The structures of the new compounds were elucidated using spectroscopic methods, including one-dimensional and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and circular dichroism spectroscopy. The potential anti-inflammatory activities of all the isolated compounds were determined by evaluating their inhibitory effects on the nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophages. Notably, compounds 2 and 3, which contained two hydroxymethyl functionalities instead of the trans-olefinic moiety present in the original chlorogenic acid, exhibited stronger inhibitory effects on NO production than that of the original compound. These findings suggest that the predominant chemical changes induced in chlorogenic acid by γ-irradiation may enhance its anti-inflammatory properties.

18.
Addict Biol ; 29(2): e13360, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380695

RESUMEN

Tobacco smoking is a serious health problem in society. While smoking rates are declining, smoking remains a serious risk to national health. Currently, there are several medications available to aid in smoking cessation. However, these medications have the disadvantages of low success rates in smoking cessation and various side effects. Therefore, natural-based smoking cessation aids are being suggested as a good alternative due to their accessibility and minimal side effects. The roots and stems of Acanthopanax koreanum (AK) Nakai, a plant that is native to Jeju Island, South Korea, have traditionally been used as tonic and sedatives. Moreover, eleutheroside B and chlorogenic acid are the main components of AK stem extract. In the present study, we investigated the effect of 70% ethanol AK extract and its components on ameliorating nicotine dependence and withdrawal symptoms by using behavioural tests in mice. In addition, alterations in the dopaminergic and DRD1-EPAC-ERK-CREB pathways were observed using dopamine ELISA and western blotting using mouse brains. Our findings demonstrate that the AK extract and its components effectively mitigated the effects of nicotine treatment in behavioural tests. Furthermore, it normalized the dopamine concentration and the expression level of nicotine acetylcholine receptor α7. Additionally, it was observed that AK extract and its components led to the normalization of DRD1, ERK and CREB expression levels. These results indicate that AK extract exhibits effects in ameliorating nicotine dependence behaviour and alleviating withdrawal symptoms. Moreover, EB and CGA are considered potential marker components of AK extract.


Asunto(s)
Eleutherococcus , Síndrome de Abstinencia a Sustancias , Tabaquismo , Animales , Ratones , Tabaquismo/tratamiento farmacológico , Nicotina/efectos adversos , Dopamina , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Etanol
19.
Metab Brain Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133453

RESUMEN

This study investigated the neuroprotective effect of chlorogenic acid (CGA) on pentylenetetrazole (PTZ)-induced acute epileptic seizures in mice. Epileptic animals received CGA (200 mg/kg) or sodium valproate (standard antiepileptic agent, 200 mg/kg) for four weeks. Results revealed that pre-administration of CGA significantly reversed the behavioral changes following pentylenetetrazole (PTZ) injection. Further, CGA pre-treatment caused significant increases in acetylcholinesterase (AChE) activity and brain-derived neurotrophic factor (BDNF) levels, along with marked increases in dopamine, norepinephrine, and serotonin levels. Additionally, the increased antioxidant enzymes activities, along with higher glutathione (GSH) contents and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression, were indicative of a notable improvement in the cellular antioxidant defense in mice treated with CGA. These results were associated with lowered malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, epileptic mice that received CGA showed significant declines in the content of interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and nuclear factor kappa-B (NF-κB), besides downregulating inducible nitric oxide synthase (iNOS) expression. Remarkably, CGA counteracted hippocampal apoptosis by lessening the levels of pro-apoptotic biomarkers [Bcl-2-associated X protein (Bax) and caspase-3] and increasing the anti-apoptogenic marker level of B-cell lymphoma 2 (Bcl-2). The hippocampal histopathological findings corroborated the abovementioned changes. In sum, these findings suggest that CGA could mediate the neuroprotective effect against PTZ-induced epilepsy via modulation of neurotransmitters, oxidative damage, neuroinflammation, and apoptosis. CGA, therefore, could be considered a valuable antiepileptic therapeutic supplement.

20.
J Dairy Sci ; 107(7): 4189-4204, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38369115

RESUMEN

Noncovalent interactions of 4 selected phenolic acids, including gallic acid (GA), caffeic acid (CA), chlorogenic acid (CGA), and rosmarinic acid (RA) with lactoferrin (LF) were investigated. Compound combined with LF in the binding constant of CA > GA > RA > CGA, driven by van der Waals and hydrogen bonding for GA, and hydrophobic forces for others. Conformation of LF was affected at secondary and ternary structure levels. Molecular docking indicated that GA and CA located in the same site near the iron of the C-lobe, whereas RA and CGA bound to the C2 and N-lobe, respectively. Significantly enhanced antioxidant activity of complexes was found compared with pure LF, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(2-ethylbenzothiazoline-6-sulfonate) (ABTS), and ferric reducing antioxidant power (FRAP) models. Caffeic acid, CGA, and RA significantly decreased the emulsifying stability index and improved foam ability of LF, and the effect of CA and RA was the most remarkable, respectively.


Asunto(s)
Antioxidantes , Hidroxibenzoatos , Lactoferrina , Lactoferrina/metabolismo , Lactoferrina/química , Animales , Antioxidantes/farmacología , Hidroxibenzoatos/química , Bovinos , Simulación del Acoplamiento Molecular , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Cinamatos/química , Cinamatos/farmacología , Ácido Gálico/química , Ácido Clorogénico/química , Depsidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA