Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(15): 2215-2227, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307404

RESUMEN

Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133- cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.


Asunto(s)
Melatonina , Neoplasias Gástricas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Melatonina/farmacología , Melatonina/uso terapéutico , Neoplasias Gástricas/patología , Línea Celular Tumoral , Transducción de Señal , Apoptosis , Proliferación Celular
2.
Int J Cancer ; 153(1): 224-237, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799619

RESUMEN

In gastric cancer (GC), the therapeutic response of immune checkpoint blockade (ICB) remains suboptimal. Targeting myeloid cell checkpoints might be feasible as adjuvant to current ICB regimens. We sought to evaluate the crucial role of C5aR1+ TAMs in regulating antitumor immunity and the efficacy of combinatorial treatment with antiprogrammed cell death protein-1 (PD-1) and C5aR1 blockade. Here, we found that C5aR1 was predominantly expressed on macrophages and high level of C5aR1+ TAMs infiltration could predict poor prognosis and inferior chemotherapeutic response. The flow cytometry (FCM) and single-cell RNA-seq (scRNA-seq) data revealed that C5aR1+ TAMs exhibited immunosuppressive property which might contribute to CD8+ T cell dysfunction. Blockade of C5aR1 could diminish the immunosuppressive function of TAMs and led to reinvigorated CD8+ T cells mediated antitumor immunity. Moreover, using in vitro intervention experiment based on fresh GC surgical specimens, we discovered that C5aR1 blockade exert a synergistic effect when combined with PD-1 inhibitor for tumor clearance. Our study demonstrated that C5aR1 is a critical myeloid checkpoint and plays a crucial role in regulating the immunosuppressive property of TAMs and CD8+ T cell immune tolerance. C5aR1 blockade reprograms TAMs and reinvigorated the cytotoxicity of CD8+ T cells, thus improving the efficacy of anti-PD-1 therapy for tumor eradication in GC.


Asunto(s)
Receptores de Complemento , Neoplasias Gástricas , Humanos , Linfocitos T CD8-positivos , Macrófagos/metabolismo , Receptores de Complemento/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores
3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768182

RESUMEN

Minimizing side effects, overcoming cancer drug resistance, and preventing metastasis of cancer cells are of growing interest in current cancer therapeutics. Phytochemicals are being researched in depth as they are protective to normal cells and have fewer side effects. Hesperetin is a citrus bioflavonoid known to inhibit TGFß-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion of prostate cancer cells. Targeting epigenetic modifications that cause cancer is another class of upcoming therapeutics, as these changes are reversible. Global H3K27me3 levels have been found to be reduced in invasive prostate adenocarcinomas. Combining a demethylase inhibitor and a known anti-cancer phytochemical is a unique approach to targeting cancer to attain the aforementioned objectives. In the current study, we used an H3K27 demethylase (JMJD3/KDM6B) inhibitor to study its effects on TGFß-induced EMT in prostate cancer cells. We then gave a combined hesperetin and GSK-J4 treatment to the PC-3 and LNCaP cells. There was a dose-dependent increase in cytotoxicity and inhibition of TGFß-induced migration and invasion of prostate cancer cells after GSK-J4 treatment. GSK-J4 not only induced trimethylation of H3K27 but also induced the trimethylation of H3K4. Surprisingly, there was a reduction in the H3K9me3 levels. GSK-J4 alone and a combination of hesperetin and GSK-J4 treatment effectively inhibit the important hallmarks of cancer, such as cell proliferation, migration, and invasion, by altering the epigenetic landscape of cancer cells.


Asunto(s)
Histona Demetilasas , Neoplasias de la Próstata , Humanos , Masculino , Histona Demetilasas/farmacología , Factor de Crecimiento Transformador beta/farmacología , Histona Demetilasas con Dominio de Jumonji , Transición Epitelial-Mesenquimal , Proliferación Celular , Neoplasias de la Próstata/tratamiento farmacológico
4.
J Cell Mol Med ; 25(3): 1480-1492, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33369155

RESUMEN

Melatonin exhibits antitumour activities in the treatment of many human cancers. In the present study, we aimed to improve the therapeutic potential of melatonin in gastric cancer. Our results confirmed that melatonin dose-dependently suppressed the proliferation and necrosis, and increased G0/G1 phase arrest, apoptosis, autophagy and endoplasmic reticulum (ER) stress. The Ras-Raf-MAPK signalling pathway was activated in cells after melatonin treatment. RNA-seq was performed and GSEA analysis further confirmed that many down-regulated genes in melatonin-treated cells were associated with proliferation. However, GSEA analysis also indicated that many pathways related to metastasis were increased after melatonin treatment. Subsequently, combinatorial treatment was conducted to further investigate the therapeutic outcomes of melatonin. A combination of melatonin and thapsigargin increased the apoptotic rate and G0/G1 cell cycle arrest when compared to treatment with melatonin alone. Melatonin in combination with thapsigargin triggered the increased expression of Bip, LC3-II, phospho-Erk1/2 and phospho-p38 MAPK. In addition, STF-083010, an IRE1a inhibitor, further exacerbated the decrease in survival rate induced by combinatorial treatment with melatonin and thapsigargin. Collectively, melatonin was effective in gastric cancer treatment by modifying ER stress.


Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melatonina/farmacología , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos
5.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562773

RESUMEN

NSCLC (non-small cell lung cancer) is a leading cause of cancer-related deaths worldwide. Clinical trials showed that Hiltonol, a stable dsRNA representing an advanced form of polyI:C (polyinosinic-polycytidilic acid), is an adjuvant cancer-immunomodulator. However, its mechanisms of action and effect on lung cancer have not been explored pre-clinically. Here, we examined, for the first time, how a novel Hiltonol cocktail kills NSCLC cells. By retrospective analysis of NSCLC patient tissues obtained from the tumor biobank; pre-clinical studies with Hiltonol alone or Hiltonol+++ cocktail [Hiltonol+anti-IL6+AG490 (JAK2 inhibitor)+Stattic (STAT3 inhibitor)]; cytokine analysis; gene knockdown and gain/loss-of-function studies, we uncovered the mechanisms of action of Hiltonol+++. We demonstrated that Hiltonol+++ kills the cancer cells and suppresses the metastatic potential of NSCLC through: (i) upregulation of pro-apoptotic Caspase-9 and Caspase-3, (ii) induction of cytosolic cytochrome c, (iii) modulation of pro-inflammatory cytokines (GRO, MCP-1, IL-8, and IL-6) and anticancer IL-24 in NSCLC subtypes, and (iv) upregulation of tumor suppressors, PKR (protein kinase R) and OAS (2'5' oligoadenylate synthetase). In silico analysis showed that Lys296 of PKR and Lys66 of OAS interact with Hiltonol. These Lys residues are purportedly involved in the catalytic/signaling activity of the tumor suppressors. Furthermore, knockdown of PKR/OAS abrogated the anticancer action of Hiltonol, provoking survival of cancer cells. Ex vivo analysis of NSCLC patient tissues corroborated that loss of PKR and OAS is associated with cancer advancement. Altogether, our findings unraveled the significance of studying tumor biobank tissues, which suggests PKR and OAS as precision oncological suppressor candidates to be targeted by this novel Hiltonol+++ cocktail which represents a prospective drug for development into a potent and tailored therapy for NSCLC subtypes.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Antineoplásicos Inmunológicos/farmacología , Carboximetilcelulosa de Sodio/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Óxidos S-Cíclicos/farmacología , Neoplasias Pulmonares/metabolismo , Poli I-C/farmacología , Polilisina/análogos & derivados , Tirfostinos/farmacología , eIF-2 Quinasa/metabolismo , 2',5'-Oligoadenilato Sintetasa/química , 2',5'-Oligoadenilato Sintetasa/genética , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sitios de Unión , Carboximetilcelulosa de Sodio/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Modelos Moleculares , Polilisina/farmacología , Microambiente Tumoral/efectos de los fármacos , eIF-2 Quinasa/química , eIF-2 Quinasa/genética
6.
Cell Commun Signal ; 18(1): 8, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937317

RESUMEN

BACKGROUND: NR2F6 has been proposed as an alternative cancer immune checkpoint in the effector T cell compartment. However, a realistic assessment of the in vivo therapeutic potential of NR2F6 requires acute depletion. METHODS: Employing primary T cells isolated from Cas9-transgenic mice for electroporation of chemically synthesized sgRNA, we established a CRISPR/Cas9-mediated acute knockout protocol of Nr2f6 in primary mouse T cells. RESULTS: Analyzing these Nr2f6CRISPR/Cas9 knockout T cells, we reproducibly observed a hyper-reactive effector phenotype upon CD3/CD28 stimulation in vitro, highly reminiscent to Nr2f6-/- T cells. Importantly, CRISPR/Cas9-mediated Nr2f6 ablation prior to adoptive cell therapy (ACT) of autologous polyclonal T cells into wild-type tumor-bearing recipient mice in combination with PD-L1 or CTLA-4 tumor immune checkpoint blockade significantly delayed MC38 tumor progression and induced superior survival, thus further validating a T cell-inhibitory function of NR2F6 during tumor progression. CONCLUSIONS: These findings indicate that Nr2f6CRISPR/Cas9 knockout T cells are comparable to germline Nr2f6-/- T cells, a result providing an independent confirmation of the immune checkpoint function of lymphatic NR2F6. Taken together, CRISPR/Cas9-mediated acute Nr2f6 gene ablation in primary mouse T cells prior to ACT appeared feasible for potentiating established PD-L1 and CTLA-4 blockade therapies, thereby pioneering NR2F6 inhibition as a sensitizing target for augmented tumor regression. Video abstract.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Proteínas Represoras/metabolismo , Linfocitos T/inmunología , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Antígeno CTLA-4/metabolismo , Células Cultivadas , Eliminación de Gen , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad/efectos de los fármacos , Ratones Endogámicos C57BL , Mutagénesis/genética , Neoplasias/patología , Receptor de Muerte Celular Programada 1/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Represoras/deficiencia , Reproducibilidad de los Resultados , Linfocitos T/efectos de los fármacos
7.
BMC Bioinformatics ; 20(1): 295, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31146686

RESUMEN

BACKGROUND: The real-time quantitative polymerase chain reaction (qPCR) is routinely used for quantification of nucleic acids and is considered the gold standard in the field of relative nucleic acid measurements. The efficiency of the qPCR reaction is one of the most important parameters in data analysis in qPCR experiments. The Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines recommends the calibration curve as the method of choice for estimation of qPCR efficiency. The precision of this method has been reported to be between SD = 0.007 (three replicates) and SD = 0.022 (no replicates). RESULTS: In this article, we present a novel approach to the analysis of qPCR data which has been obtained by running a dilution series. Unlike previously developed methods, our method, Pairwise Efficiency, involves a new formula that describes pairwise relationships between data points on separate amplification curves and thus enables extensive statistics. The comparison of Pairwise Efficiency with the calibration curve by Monte Carlo simulation shows the two-folds improvement in the precision of estimations of efficiency and gene expression ratios on the same dataset. CONCLUSIONS: The Pairwise Efficiency nearly doubles the precision in qPCR efficiency determinations compared to standard calibration curve method. This paper demonstrates that applications of combinatorial treatment of data provide the improvement of the determination.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Calibración , Línea Celular , Análisis de Datos , Técnicas de Dilución del Indicador , Ratones , Método de Montecarlo
8.
Stem Cells ; 36(5): 737-750, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29517828

RESUMEN

Together with residual host neurons, transplanted neural stem cell (NSC)-derived neurons play a critical role in reconstructing disrupted neural circuits after spinal cord injury (SCI). Since a large number of tracts are disrupted and the majority of host neurons die around the lesion site as the damage spreads, minimizing this spreading and preserving the lesion site are important for attaining further improvements in reconstruction. High mobility group box-1 (HMGB1) is a damage-associated molecular pattern protein that triggers sterile inflammation after tissue injury. In the ischemic and injured brain, neutralization of HMGB1 with a specific antibody reportedly stabilizes the blood-brain barrier, suppresses inflammatory cytokine expression, and improves functional recovery. Using a SCI model mouse, we here developed a combinatorial treatment for SCI: administering anti-HMGB1 antibody prior to transplantation of NSCs derived from human induced pluripotent stem cells (hiPSC-NSCs) yielded a dramatic improvement in locomotion recovery after SCI. Even anti-HMGB1 antibody treatment alone alleviated blood-spinal cord barrier disruption and edema formation, and increased the number of neurites from spared axons and the survival of host neurons, resulting in functional recovery. However, this recovery was greatly enhanced by the subsequent hiPSC-NSC transplantation, reaching an extent that has never before been reported. We also found that this improved recovery was directly associated with connections established between surviving host neurons and transplant-derived neurons. Taken together, our results highlight combinatorial treatment with anti-HMGB1 antibody and hiPSC-NSC transplantation as a promising novel therapy for SCI. Stem Cells 2018;36:737-750.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteína HMGB1/inmunología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Células Madre/métodos
9.
Bioorg Med Chem Lett ; 27(9): 2058-2062, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28285918

RESUMEN

The novel compound jesridonin, has extensive anti-tumor activity. In this study, we aim to investigate the cytotoxic effects of jesridonin in combination with paclitaxel. Our results showed that jesridonin in combination with paclitaxel had synergistic cytotoxic effects on human esophageal carcinoma both in vitro and in vivo. Hoechst 33258 staining and the Annexin-V FITC assay demonstrated that paclitaxel synergized with jesridonin in a stronger induction of apoptosis than treatment with paclitaxel or jesridonin alone. Western blotting results revealed that the synergistic apoptosis-induction effects of paclitaxel and jesridonin were mediated by the mitochondrial pathway. This may provide a novel strategy to overcome drug resistance for esophageal cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Paclitaxel/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Neoplasias Esofágicas/patología , Esófago/efectos de los fármacos , Esófago/patología , Humanos
10.
J Pept Sci ; 21(12): 853-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26470850

RESUMEN

Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. ß-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a ß-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Cetoconazol/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Sinergismo Farmacológico , Células Hep G2 , Humanos , Técnicas In Vitro , Plancton/efectos de los fármacos
11.
J Neurosci Res ; 92(7): 870-83, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24658967

RESUMEN

Because of the complex, multifaceted nature of spinal cord injury (SCI), it is widely believed that a combination of approaches will be superior to individual treatments. Therefore, we employed a rat model of cervical SCI to evaluate the combination of four noninvasive treatments that individually have been reported to be effective for acute SCI during clinically relevant therapeutic time windows. These treatments included ghrelin, ibuprofen, C16, and ketogenic diet (KD). These were selected not only because of their previously reported efficacy in SCI models but also for their potentially different mechanisms of action. The administration of ghrelin, ibuprofen, C16, and KD several hours to days postinjury was based on previous observations by others that each treatment had profound effects on the pathophysiology and functional outcome following SCI. Here we showed that, with the exception of a modest improvement in performance on the Montoya staircase test at 8-10 weeks postinjury, the combinatorial treatment with ghrelin, ibuprofen, C16, and KD did not result in any significant improvements in the rearing test, grooming test, or horizontal ladder. Histologic analysis of the spinal cords did not reveal any significant differences in tissue sparing between treatment and control groups. Although single approaches of ghrelin, ibuprofen, C16, and KD have been reported to be beneficial after SCI, our results show that the combination of the four interventions did not confer significant functional or histological improvements in a cervical model of SCI. Possible interactions among the treatments may have negated their beneficial effects, emphasizing the challenges that have to be addressed when considering combinatorial drug therapies for SCI.


Asunto(s)
Complemento C6/uso terapéutico , Dieta Cetogénica/métodos , Ghrelina/uso terapéutico , Ibuprofeno/uso terapéutico , Traumatismos de la Médula Espinal/dietoterapia , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Bencenosulfonatos , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Masculino , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología , Estadísticas no Paramétricas
12.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107797

RESUMEN

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Cerebelosas , ADN (Citosina-5-)-Metiltransferasa 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Animales , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Humanos , Ratones , Línea Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inactivación de Genes/métodos
13.
Int J Immunopathol Pharmacol ; 38: 3946320241287873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39313767

RESUMEN

Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.


Asunto(s)
Proliferación Celular , Quinasa 6 Dependiente de la Ciclina , Leucemia-Linfoma de Células T del Adulto , Umbeliferonas , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Quinasa 6 Dependiente de la Ciclina/metabolismo , Ferula/química , Leucemia-Linfoma de Células T del Adulto/metabolismo , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/patología , Leucemia-Linfoma de Células T del Adulto/radioterapia , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Umbeliferonas/farmacología
14.
J Control Release ; 354: 821-834, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36708881

RESUMEN

It remains challenging to cure chronic diabetic wounds due to its' harsh microenvironment and poor tissue regeneration ability. At present, bacteria elimination, inflammatory response suppression and angiogenesis orderly render an important paradigm for chronic diabetic wound treatment. Herein, smart-responsive multifunctional hydrogels were developed to improve chronic diabetic wound healing, which could quickly respond to the acidic environment of the diabetic wound site and mediate multistage sequential delivery of silver and curcumin-loaded polydopamine nanoparticles (PDA@Ag&Cur NPs) and vascular endothelial growth factor (VEGF). PDA@Ag&Cur NPs and VEGF endowed the hydrogels with antibacterial, anti-inflammatory and angiogenesis performances, respectively. The in vitro and in vivo experiments confirmed that our multistage drug delivery hydrogels could effectively eliminate bacteria, relieve inflammatory response, and induce angiogenesis, hence accelerating the closure of chronic diabetic wounds. In conclusion, we highlighted the importance of multistage manipulation in wound healing and offered a combinatorial therapeutic strategy to sequentially deliver drugs exactly aiming at the dynamic wound healing stages.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , Bacterias
15.
Cancers (Basel) ; 15(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190128

RESUMEN

Proteasome inhibitors (PIs) are extensively used for the therapy of multiple myeloma. However, patients continuously relapse or are intrinsically resistant to this class of drugs. In addition, adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. Here, to identify compounds that can increase the efficacy of PIs, we performed a functional screening using a library of small-molecule inhibitors covering key signaling pathways. Among the best synthetic lethal interactions, the euchromatic histone-lysine N-methyltransferase 2 (EHMT2) inhibitor UNC0642 displayed a cooperative effect with carfilzomib (CFZ) in numerous multiple myeloma (MM) cell lines, including drug-resistant models. In MM patients, EHMT2 expression correlated to worse overall and progression-free survival. Moreover, EHMT2 levels were significantly increased in bortezomib-resistant patients. We demonstrated that CFZ/UNC0642 combination exhibited a favorable cytotoxicity profile toward peripheral blood mononuclear cells and bone-marrow-derived stromal cells. To exclude off-target effects, we proved that UNC0642 treatment reduces EHMT2-related molecular markers and that an alternative EHMT2 inhibitor recapitulated the synergistic activity with CFZ. Finally, we showed that the combinatorial treatment significantly perturbs autophagy and the DNA damage repair pathways, suggesting a multi-layered mechanism of action. Overall, the present study demonstrates that EHMT2 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients.

16.
Front Cell Infect Microbiol ; 13: 1219984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928190

RESUMEN

Introduction: Staphylococci are among the list of problematic bacteria contributing to the global antibiotic resistance (ABR) crisis. Their ability to adopt the small colony variant (SCV) phenotype, induced by prolonged antibiotic chemotherapy, complicates staphylococcal infection control options. Novel and alternative approaches are needed to tackle staphylococcal infections and curb ABR. Manuka honey (MH), a non-antibiotic alternative is recognized for its unique antibacterial activity based on its methylglyoxal (MGO) component. Methods: In this study, MH (MGO 830+) was tested in combination with gentamicin (GEN), rifampicin (RIF), or vancomycin (VA) against staphylococcal wildtype (WT) and SCVs. To our knowledge, there are no current studies in the literature documenting the effects of MH on staphylococcal SCVs. While Staphylococcus aureus is well-studied for its international ABR burden, limited data exists demonstrating the effects of MH on S. epidermidis and S. lugdunensis whose pathogenic relevance and contribution to ABR is also rising. Results & discussion: The three staphylococci were most susceptible to RIF (0.06-0.24 µg/ml), then GEN (0.12-0.49 µg/ml), and lastly VA (0.49-0.96 µg/ml). The MICs of MH were 7%, 7-8%, and 6-7% (w/v), respectively. Fractional inhibitory concentration (FIC) evaluations showed that the combined MH + antibiotic effect was either additive (FICI 1-2), or partially synergistic (FICI >0.5-1). While all three antibiotics induced SCVs in vitro, stable SCVs were observed in GEN treatments only. The addition of MH to these GEN-SCV-induction analyses resulted in complete suppression of SCVs (p<0.001) in all three staphylococci, suggesting that MH's antibacterial properties interfered with GEN's SCV induction mechanisms. Moreover, the addition of MH to growth cultures of recovered stable SCVs resulted in the inhibition of SCV growth by at least 99%, indicating MH's ability to prevent subsequent SCV growth. These in vitro analyses demonstrated MH's broad-spectrum capabilities not only in improving WT staphylococci susceptibility to the three antibiotics, but also mitigated the development and subsequent growth of their SCV phenotypes. MH in combination with antibiotics has the potential to not only resensitize staphylococci to antibiotics and consequently require less antibiotic usage, but in instances where prolonged chemotherapy is employed, the development and growth of SCVs would be hampered, providing a better clinical outcome, all of which mitigate ABR.


Asunto(s)
Miel , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus , Óxido de Magnesio/farmacología , Óxido de Magnesio/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Rifampin/farmacología , Staphylococcus epidermidis , Gentamicinas/farmacología
17.
Phytomedicine ; 98: 153936, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35114449

RESUMEN

BACKGROUND: Most chemotherapeutics used in cancer therapies exhibit considerable side effects to the patients. Thus, developing new chemo agents to treat cancer patients with minimal toxic and side effects is urgently needed. Recently, the combination of different chemotherapeutics has become a promising strategy to treat malignancies. Thymoquinone (TQ) is a primary bioactive compound derived from the folk medicinal plant Nigella sativa, which has been found an antitumor, chemopreventive and chemopotentiating agent against human neoplastic diseases. PURPOSE: We briefly summarize the current research of the biomolecular mechanisms of TQ and evaluate the existing literature on TQ adjuvant therapies against various cancers. METHOD: The data in this review were gathered by several search engines including, Google Scholar, PubMed and ScienceDirect. We highlighted and classified the outcomes of both in vitro and in vivo experiments of TQ adjuvant therapies against human cancers and their chemopreventive activities on vital organs. RESULTS: Several studies have shown that TQ synergistically potentiated the antitumor activity of numerous chemo agents against human neoplastic disease, including lung, breast, liver, colorectal, skin, prostate, stomach, bone and blood cancers. TQ also acted as a chemopreventive agent and reduced the toxicity of many chemo agents to vital organs, such as the heart, liver, kidneys and lungs. CONCLUSION: In summary, we highly recommend an advanced evaluation of TQ adjuvant therapies at the level of preclinical and clinical trials, which could lead to a novel combinatorial therapy for cancer treatment with low or tolerable adverse effects on patients.

18.
Life Sci ; 308: 120927, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063977

RESUMEN

AIMS: Colorectal carcinoma (CRC) is the third most prevalent cancer with high mortality. Besides regulating the circadian rhythm, melatonin (MTN) exerts anticancer activities. Paclitaxel (PTX) is successful against different malignancies, however, acquired resistance and variability in patient response restrict its use. mTOR and MAPK pathways are often deregulated in human cancers. We aimed to investigate whether MTN enhances or sensitizes the chemotherapeutic activity of PTX and if so, determine the underlying possible mechanisms in CRC in vitro. MAIN METHODS: Antiproliferative and cytotoxic activities of PTX and MTN were assessed alone and in combination, as well as with different treatment regimens (renewal or replacement of the treatment after 24 h), up to 48 h. Apoptosis, viability and autophagy were assessed by flow cytometry. mTOR and MAPK pathway activities were investigated by immunoblotting. KEY FINDINGS: Both drugs reduced cell viability in a dose-dependent manner at 24 and 48 h. Only the highest dose of MTN (500 µM) potentiated the cytotoxicity of PTX (50 nM). Replacement of PTX after 24 h with MTN was superior in reducing cell viability than vice versa via apoptosis induction. Renewal of MTN treatment every 24 h reduced autophagy compared to the control group, while other treatments did not alter the autophagic activity. A 24 h MTN treatment followed by 24 h PTX treatment increased S6 phosphorylation in a mTOR-independent manner and increased Erk1/2 phosphorylation. SIGNIFICANCE: The present study suggests that sequential treatment with MTN and PTX distinctly affect apoptosis and cytotoxicity via regulating mTOR and MAPK pathways differentially in CRC.


Asunto(s)
Neoplasias Colorrectales , Melatonina , Apoptosis , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Melatonina/farmacología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Serina-Treonina Quinasas TOR
19.
Pharmaceutics ; 14(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456577

RESUMEN

Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients.

20.
Anticancer Res ; 42(2): 723-730, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35093870

RESUMEN

BACKGROUND/AIM: Over-expression of both P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) has been associated with multidrug-resistance in glioblastoma (GBM). Though previously studied broad-spectrum inhibitors of drug efflux pumps have failed to progress in clinical studies due to in vivo toxicity, research into clinically viable targeted inhibitors is needed. This study evaluated the effects of Ko143, a non-toxic analog of fumitremorgin C, on temozolomide (TMZ) efficacy in resistant glioblastoma stem cells. MATERIALS AND METHODS: We used ATP-Glo assay to determine cell viabilities and flow cytometry to perform cell cycle analysis. Comparative gene expression was analysed through RT-qPCR. RESULTS: TMZ IC50 decreased 41.07% (p<0.01) in the resistant phenotype when delivered in combination with Ko143. Additionally, the TMZ-resistant phenotype (GBM146) displayed 44-fold greater P-gp expression than the TMZ-sensitive phenotype (GBM9) (p<0.01), yet a 0.6-fold lower BCRP expression. Ko143 potentiates TMZ efficacy and likely inhibits P-glycoprotein more potently than previously indicated. CONCLUSION: Further development of non-toxic, targeted inhibitors of drug efflux pumps for use in combinatorial chemotherapy may improve glioblastoma patient prognosis.


Asunto(s)
Dicetopiperazinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Temozolomida/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA