RESUMEN
Construction of functional synthetic systems that can reversibly bind and transport the most biologically important gaseous molecules, oxygen and nitric oxide (NO), remains a contemporary challenge. Myoglobin and nitrophorin perform these respective tasks employing a protein-embedded heme center where one axial iron site is occupied by a histidine residue and the other is available for small molecule ligation, structural features that are extremely difficult to mimic in protein-free environments. Indeed, the hitherto reported designs rely on sophisticated multistep syntheses for limiting access to one of the two axial coordination sites in small molecules. We have shown previously that binuclear Ga(III) and Al(III) corroles have available axial sites, and now report a redox-active binuclear Fe(III) corrole, (1-Fe)2 , in which each (corrolato)Fe(III) center is 5-coordinate, with one axial site occupied by an imidazole from the other corrole. The binuclear structure is further stabilized by attractive forces between the corrole π systems. Reaction of NO with (1-Fe)2 affords mononuclear iron nitrosyls, and of functional relevance, the reaction is reversible: nitric oxide is released upon purging the nitrosyls with inert gases, thereby restoring (1-Fe)2 in solutions or films.
RESUMEN
A triply linked dicarbacorrole dimer (7) was synthesized from a new meso-meso singly linked dicarbacorrole dimer precursor (6) via an oxidative fusion reaction by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in the presence of trifluoromethanesulfonic acid (TfOH). Single crystal X-ray structure of 7 adopts a flat conformation with a length as ca. 15.946â Å and a width as 6.903â Å, which can be regarded as a short carbaporphyrinoid tape. Two coordinated Cu ions keeps the +3 oxidation state in 7, as confirmed by NMR spectroscopy, single crystal X-ray diffraction and X-ray photoelectron spectroscopy (XPS). This is in sharp contrast to the Osuka's triply linked tetrapyrrolic corrole dimers, where the inner 3NH form is not stable and thus can only act as a divalent ligand. Due to the non-aromatic nature of dicarbacorrole macrocycle, the largely decreased HOMO-LUMO gap and red-shifted absorption of 7 are best ascribed to the strong electronic interaction between two dipyrromethene-type chromophores. To our knowledge, this is the first fully fused carbaporphyrinoid dimer with ß-ß, meso-meso, ß-ß triply linkages prepared to date.
RESUMEN
Considering the potential advantages of minimally sized corroles for diverse applications, this study reports a facile access to cyano-substituted derivatives via a rare CF3/CN conversion. Investigation of the fully characterized gallium, phosphorus, and cobalt complexes discloses multiple effects of the meso-nitrile groups attached to the macrocycle. This corrole appears to be the most electron poor derivative which comes into play in the redox potentials of the corresponding complexes. Compared to its precursor, both the absorption and emission are strongly red shifted and the fluorescence lifetime and quantum yield are much larger. The coordination chemistry is affected as well, by virtue of axial ligands being perpendicular rather than parallel relative to each other.
RESUMEN
The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222, a stable Zr-based MOF made from Ni(TCPP) with natural vacancies, has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298â K. No degradation of the crystalline structure of PCN-222 was observed. At 1â atm, the adsorbed CO(g) volumes measured for the best materials were 12.15â cm3 g-1 and 14.01â cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption.
RESUMEN
Boron subphthalocyanines with chloride and fluoride axial ligands and three antimony complexes chelated by corroles that differ in size and electron-richness were examined as electrocatalysts for reduction of protons to hydrogen. Experiment- and computation-based investigations revealed that all redox events are ligand-centered and that the meso-C of the corroles and the peripheral N atoms of the subphthalocyanines are the largely preferred proton-binding sites.
RESUMEN
Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala)4 Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala)4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor-acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a "scorpion-shaped" molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH O=C-NH O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor-acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.
Asunto(s)
Aminoácidos/química , Transporte de Electrón , Enlace de Hidrógeno , Oligopéptidos/química , Dicroismo Circular , Electrones , Imidas/química , Cinética , Espectroscopía de Resonancia Magnética , Perileno/análogos & derivados , Perileno/química , Porfirinas/química , Pliegue de Proteína , TermodinámicaRESUMEN
Copper and silver tritolylcorroles (TTC) are symmetrically functionalized to carry two tetracyanobutadiene (TCBD) entities via [2+2] cycloaddition-retroeletrocyclization reaction involving ethynyl functionalized corroles with an electron acceptor, tetracyanoethylene (TCNE) in excellent yields, as the first examples of corrole-TCBD push-pull systems. The strong push-pull effect resulted in charge polarization in the ground state resulting in a considerable hypsochromic shift of the spectrum extending it into the near-IR region. Electrochemical studies coupled with computational studies revealed considerable interactions between the two TCBD entities via the corrole π-system and the degree of such interactions was found to depend on the metal ion present in the corrole cavity. Energy considerations suggested charge transfer (CT) from the S2 or vibrationally hot S1 state but not the relaxed S1 state in the case of CuTTC(TCBD)2 while CT to occur from all these states in the case of AgTTC(TCBD)2 . Additionally, the high-energy CT states populate the low-lying triplet states. Systematic femtosecond pump-probe studies provided the ultimate proof for the occurrence of excited CT as a function of excitation wavelength followed by the efficient population of the triplet states. The present study brings out the significance of charge transfer in efficiently populating the triplet states in rather unusual copper and silver corroles carrying two TCBD entities.
RESUMEN
Corroles have attracted increasing research interests in recent decades owing to their unique properties over porphyrins. However, the relatively inefficient and tedious synthetic procedures of corrole building blocks with functional groups for bioconjugation hindered their bioapplications. Herein, we report a highly efficient protocol to synthesize corrole-peptide conjugates with good yields (up to 63 %) without using prepared corrole building blocks. By condensing two -COOH-bearing-dipyrromethane molecules onto an aldehyde group on resin-bound peptide chains in a controllable manner, a series of desired products with long (up to 25â residues) and bioactive peptide chains were obtained with at most one chromatographic purification. The synthesized compounds exhibited potential applications as chelators for metal ions for biomedical applications, as building blocks for supramolecular materials, as well as targeted fluorescent probes.
RESUMEN
Herein, we report the synthesis and evaluation of carboxylic acid corroles bearing either one, two, three of four carboxylic groups as gram-positive antibacterial agents against two strains of S. aureus, one methicillin-sensible (MSSA) and the other methicillin-resistant (MRSA). Lead compounds 5 and 6 show low minimum inhibitory concentrations (MICs) of 0.78 µg/mL against both MSSA and MRSA. These molecules, previously underexplored as antibacterial agents, can now serve as a new scaffold for antimicrobial development.
Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Staphylococcus aureus , Ácidos Carboxílicos/farmacología , Meticilina , Pruebas de Sensibilidad MicrobianaRESUMEN
Broadly, the industrial applications of hydrazine cause environmental pollution and damage to living organisms because of the high toxicity of hydrazine. Therefore, monitoring hydrazine in the environmental system is of great significance to human health. Here, a new fluorescent probe PC-N2 H4 based on corrole dye was developed for the detection of hydrazine that had excellent specificity, low limit of detection (LOD: 88 nM), and a wide pH range (6-12). Upon addition of hydrazine into the probe solution, the strong red fluorescence was 'turned on' centred at 653 nm with a 127-fold fluorescence intensity enhancement. The detection mechanism was proved using ESI-MS, 1 H NMR, and density functional theoretical calculations. Importantly, the probe was utilized to fabricate a ready-to-use test strip to realize the visual inspection of hydrazine. Furthermore, PC-N2 H4 was successfully applied for practical detection of hydrazine in water samples with satisfactory recoveries ranging from 96.2% to 105.0%, and indicating that the designed PC-N2 H4 is highly promising for hydrazine detection in an aqueous environment. Considering the diverse toxicological functions of hydrazine, PC-N2 H4 was also successfully used to image exogenous hydrazine in HeLa cells and zebrafish.
Asunto(s)
Hidrazinas , Pez Cebra , Animales , Humanos , Células HeLa , Espectrometría de Fluorescencia , Hidrazinas/química , Colorantes Fluorescentes/química , AguaRESUMEN
The versatility of metal complexes of corroles has raised interest in the use of these molecules as elements of chemical sensors. The tuning of the macrocycle properties via synthetic modification of the different components of the corrole ring, such as functional groups, the molecular skeleton, and coordinated metal, allows for the creation of a vast library of corrole-based sensors. However, the scarce conductivity of most of the aggregates of corroles limits the development of simple conductometric sensors and requires the use of optical or mass transducers that are rather more cumbersome and less prone to be integrated into microelectronics systems. To compensate for the scarce conductivity, corroles are often used to functionalize the surface of conductive materials such as graphene oxide, carbon nanotubes, or conductive polymers. Alternatively, they can be incorporated into heterojunction devices where they are interfaced with a conductive material such as a phthalocyanine. Herewith, we introduce two heterostructure sensors combining lutetium bisphthalocyanine (LuPc2) with either 5,10,15-tris(pentafluorophenyl) corrolato Cu (1) or 5,10,15-tris(4-methoxyphenyl)corrolato Cu (2). The optical spectra show that after deposition, corroles maintain their original structure. The conductivity of the devices reveals an energy barrier for interfacial charge transport for 1/LuPc2, which is a heterojunction device. On the contrary, only ohmic contacts are observed in the 2/LuPc2 device. These different electrical properties, which result from the different electron-withdrawing or -donating substituents on corrole rings, are also manifested by the opposite response with respect to ammonia (NH3), with 1/LuPc2 behaving as an n-type conductor and 2/LuPC2 behaving as a p-type conductor. Both devices are capable of detecting NH3 down to 10 ppm at room temperature. Furthermore, the sensors show high sensitivity with respect to relative humidity (RH) but with a reversible and fast response in the range of 30-60% RH.
RESUMEN
Antimony corrole cations have been prepared by one-electron oxidation of antimony(III) congeners with silver(I) and copper(II) salts. Isolation and crystallization was successful for the first time, and the X-ray crystallographic investigation unraveled structural similarities with antimony(III)corroles. EPR experiments showed strong hyperfine interactions of the unpaired electron with the 121 Sb (I=5/2) and 123 Sb nuclei (I=7/2). A DFT analysis supports the description of the oxidized form as a SbIII corrole radical with less than 2 % SbIV character. In the presence of water or a fluoride source like PF6 - , the compounds undergo a redox disproportionation to yield known antimony(III)corroles and either difluorido-antimony(V)corroles, or bis-µ-oxido-di[antimony(V)corroles] via novel cationic hydroxo-antimony(V) derivatives.
RESUMEN
In nature, cytochrome c oxidases catalyze the 4e- oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI , synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e- ORR with a half-wave potential of 0.89â V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII . We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.
RESUMEN
Two new trimethoxyl A2B triaryl corroles 10-(2,4,6-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)- corrole (1) and 10-(3,4,5-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)-corrole (2) and their gallium(III) and phosphorus(V) (1-Ga, 1-P, 2-Ga and 2-P) complexes had been prepared and well characterized by UV-vis, NMR and HR-MS. Among all compounds, 2-Ga, 1-P and 2-P showed excellent in vivo photodynamic activity against the MDA-MB-231, A549, Hela and HepG2 cell lines upon light irradiation at 625 nm. And 2-P even exhibited higher phototoxicity than the clinical photosensitizer temoporfin. Also, 2-P exhibited the highest singlet oxygen quantum yield and photostability. The preliminary investigation revealed that 2-P could be rapidly absorbed by tumor cells and mainly located in the cytoplasm. After photodynamic therapy (PDT) treatment with 2-P, mitochondrial membrane potential destruction, intracellular ROS level increasing and nuclear fragmentation of cancer cells could be observed. Cell cycle analysis demonstrated that the 2-P PDT may cause tumor cell arrest at sub-G1 stage and induce early and late apoptosis of cells. These results suggest that 2-P is a promising candidate as a photosensitizer for photodynamic therapy.
Asunto(s)
Galio , Fotoquimioterapia , Humanos , Galio/farmacología , Galio/química , Fármacos Fotosensibilizantes/farmacología , Fósforo/farmacología , Línea Celular TumoralRESUMEN
Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.
Asunto(s)
Porfirinas , Sarcosina , Porfirinas/química , IsomerismoRESUMEN
Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1 Hâ NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding 1)â external 18-crown-6-ether to extract water molecules and 2)â potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.
RESUMEN
A copper triflate-mediated approach to access copper complexes of pyrrole-substituted corroles from the reaction of 1,9-diformyldipyrromethanes and an excess amount of pyrrole is presented for the first time. This procedure is a simple and efficient way for the preparation of corroles with a polymerizable substituent on meso-positions.
RESUMEN
PorphyStruct, a new digital tool for the analysis of non-planar distortion modes of different porphyrinoids, and its application to corrole structures is reported. The program makes use of the normal-coordinate structure decomposition technique (NSD) and employs sets of normal modes equivalent to those established for porphyrins in order to describe the out-of-plane dislocation pattern of perimeter atoms from corroles, norcorroles, porphycenes and other porphyrinoids quantitatively and in analogy to the established terminology. A comparative study of 17 porphyrin structures shows very similar results to the original NSD analysis and no systematic error. Application to corroles is successful and reveals the necessity to implement an extended basis of normal modes for a large share of experimental structures. The results frequently show the concomitant occurence of several modes but remain interpretable. For group XI metal corroles the phenomenon of supersaddling was unravelled, allowing for more in-depths discussions of structure-function correlations.
RESUMEN
In contrast to the extensive development of the meso-functionalization of porphyrins, that of corroles had rarely been explored until the development of practical synthetic methods for meso-free corroles in 2015. The ready availability of meso-free corroles opened up meso-functionalization chemistry of corroles, giving rise to successful synthesis of various meso-substituted corroles such as meso-halogen, meso-nitro, meso-amino, meso-oxo, and meso-iminocorroles as well as meso-meso-linked corrole dimers and corrole tapes. In some cases, 2NH corroles exist as stable or transient radical species. The impact of meso-functionalization on the structures, electronic properties, optical characteristics, and aromaticity of corroles are highlighted in this Minireview.
RESUMEN
The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials.