Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arch Microbiol ; 206(3): 123, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407586

RESUMEN

In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.


Asunto(s)
Aspergillus flavus , Dióxido de Carbono , Biodegradación Ambiental , Aspergillus niger , Biotecnología
2.
Int Microbiol ; 27(2): 615-630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37582845

RESUMEN

Investigating the ability of bacteria to simultaneously enhance hydrocarbon removal and reduce heavy metals' toxicity is necessary to design more effective bioremediation strategies. A bacterium (NL2 strain) isolated from an Algerian oilfield was cultivated on crude oil as sole carbon and energy sources. Molecular analyses of the 16S rRNA gene sequence placed the strain within the Cutibacterium genera. This isolate was able to tolerate up to 60% of crude oil as sole carbon source. Chemical analyses (GC-MS) evidenced that strain NL2 was able to degrade 92.22% of crude oil (at optimal growing conditions: pH 10, 44 °C, 50 g L-1 NaCl, and 20% of crude oil (v/v) as sole carbon source) in only 7 days. NL2 isolate was also able to produce biosurfactants with reduction of surface tension of growing media (29.4 mN m-1). On the other hand, NL2 strain was able to tolerate high lead (Pb) and copper (Cu) concentrations (up to 60 mM). In fact, NL2 cultivated in the presence of 20% of crude oil, and 0.48 mM of Pb was able to reduce Pb concentration by a 41.36%. In turn, when cultivated on high Pb concentration (15 mM), the strain was able to remove 35.19% of it and 86.25% of crude oil, both in a time frame of 7 days. Our findings suggest that Cutibacterium strain NL2 is able to efficiently use and remove a wide range of crude oil substrates in presence of high Pb concentration. Accordingly, NL2 strain is of extreme interest from a biotechnological standpoint.


Asunto(s)
Metales Pesados , Petróleo , Petróleo/análisis , Petróleo/metabolismo , Yacimiento de Petróleo y Gas , ARN Ribosómico 16S/genética , Plomo/metabolismo , Bacterias/genética , Metales Pesados/metabolismo , Biodegradación Ambiental , Carbono/metabolismo
3.
Environ Sci Technol ; 58(33): 14855-14863, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39101928

RESUMEN

Fish exposed to xenobiotics like petroleum-derived polycyclic aromatic hydrocarbons (PAHs) will immediately initiate detoxification systems through effective biotransformation reactions. Yet, there is a discrepancy between recognized metabolic pathways and the actual metabolites detected in fish following PAH exposure like oil pollution. To deepen our understanding of PAH detoxification, we conducted experiments exposing Atlantic haddock (Melanogrammus aeglefinus) to individual PAHs or complex oil mixtures. Bile extracts, analyzed by using an ion mobility quadrupole time-of-flight mass spectrometer, revealed novel metabolites associated with the mercapturic acid pathway. A dominant spectral feature recognized as PAH thiols set the basis for a screening strategy targeting (i) glutathione-, (ii) cysteinylglycine-, (iii) cysteine-, and (iv) mercapturic acid S-conjugates. Based on controlled single-exposure experiments, we constructed an interactive library of 33 metabolites originating from 8 PAHs (anthracene, phenanthrene, 1-methylphenanthrene, 1,4-dimethylphenanthrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene). By incorporation of the library in the analysis of samples from crude oil exposed fish, PAHs conjugated with glutathione and cysteinylglycine were uncovered. This qualitative study offers an exclusive glimpse into the rarely acknowledged mercapturic acid detoxification pathway in fish. Furthermore, this furnishes evidence that this metabolic pathway also succeeds for PAHs in complex pollution sources, a notable discovery not previously reported.


Asunto(s)
Acetilcisteína , Petróleo , Hidrocarburos Policíclicos Aromáticos , Petróleo/metabolismo , Animales , Hidrocarburos Policíclicos Aromáticos/metabolismo , Acetilcisteína/metabolismo , Contaminantes Químicos del Agua/metabolismo , Gadiformes/metabolismo
4.
Environ Res ; 258: 119455, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906449

RESUMEN

Heterogeneous catalytic processes based on zero-valent iron (ZVI) have been developed to treat soil and wastewater pollutants. However, the agglomeration of ZVI reduces its ability to activate persulfate (PS). In this study, a new Fe-Mn@AC activated material was prepared to activated PS to treat oil-contaminated soil, and using the microscopic characterization of Fe-Mn@AC materials, the electron transfer mode during the Fe-Mn@AC activation of PS was clarified. Firstly, the petroluem degradation rate was optimized. When the PS addition amount was 8%, Fe-Mn@AC addition amount was 3% and the water to soil ratio was 3:1, the petroluem degradation rate in the soil reached to the maximum of 85.69% after 96 h of reaction. Then it was illustrated that sulfate and hydroxyl radicals played major roles in crude oil degradation, while singlet oxygen contributed slightly. Finally, the indigenous microbial community structures remaining after restoring the Fe-Mn@AC/PS systems were analyzed. The proportion of petroleum degrading bacteria in soil increased by 23% after oxidation by Fe-Mn@AC/PS system. Similarly, the germination rate of wheat seeds revealed that soil toxicity was greatly reduced after applying the Fe-Mn@AC/PS system. After the treatment with Fe-Mn@AC/PS system, the germination rate, root length and bud length of wheat seed were increased by 54.05%, 7.98 mm and 6.84 mm, respectively, compared with the polluted soil group. These results showed that the advanced oxidation system of Fe-Mn@AC activates PS and can be used in crude oil-contaminated soil remediation.


Asunto(s)
Hierro , Manganeso , Petróleo , Contaminantes del Suelo , Sulfatos , Contaminantes del Suelo/química , Hierro/química , Manganeso/química , Sulfatos/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos
5.
Biodegradation ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733427

RESUMEN

Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.

6.
Magn Reson Chem ; 62(9): 670-685, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38807559

RESUMEN

The present review focuses on the most recent advances in liquid-phase NMR of asphaltenes, leaving apart an overwhelming amount of publications dealing with solid-state NMR investigations in this field. Owing to the complexity of the coal-derived products, and in particular, asphaltenes, their 1H and 13C NMR spectra consist of a number of overlapping signals belonging to different hydrocarbon types. Comprehensive studies of asphaltenes by means of NMR reveal the characteristic functional groups of their fractions together with the spectral regions in which they resonate. NMR studies of asphaltenes provide a straightforward guideline for their chemical composition and that of the related coal-derived products.

7.
Int J Phytoremediation ; : 1-11, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154233

RESUMEN

Persistent crude oil contamination poses a significant environmental challenge. In this study, the efficacy of Vigna unguiculata (L.) and associated rhizospheric microorganisms in remediating crude oil-contaminated soil within a microcosm setting was investigated. A randomized block design was employed, and soil samples were subjected to varying degrees of contamination: 0% (UR), 2.5% (CR2), 5.0% (CR5), 7.5% (CR7), and 10.0% (CR10) w/w crude oil. The investigation aimed to assess the potential of Vigna unguiculata (L.) in mitigating crude oil contamination across these defined contamination gradients. The plant growth and crude oil removal were monitored concurrently post-emergence. Plant emergence and growth were significantly affected due to contamination, especially among plants in CR5 and CR10. The bacterial population was higher in the rhizosphere, and the treatments with lower hydrocarbon contamination. It was shown that plant density encouraged the growth of bacterial communities. Significant reduction in soil TPH was observed in CR2 (76.61%) and CR7 (65.88%). There was a strong correlation between plant growth and oil-utilizing bacterial population (r2 = 0.966) and plant growth and hydrocarbon reduction (r2 = 0.956), signifying the role of plant-bacterial synergy. Saturate fractions (C30 - C32) were significantly degraded to lower molecular weight compounds (C11 - C14). Except in CR5 and CR10, the remediation within the cowpea rhizosphere was effective even at regulatory standards. Understanding the rhizosphere ecological dynamics would further highlight the role the bacteria played; hence, it is recommended.


The present study established a direct link between bacterial-plant interaction and biodegradation of crude oil. It extensively explored the nature of the degradation and also the fate of the residual oil. The present study achieved high rate of TPH removal within 12 weeks using cowpea alone as against the several previous reports that used other stimulants.

8.
Int J Phytoremediation ; : 1-9, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847151

RESUMEN

Crude oil spills imperil aquatic ecosystems globally, prompting innovative solutions such as microalgae-based bioremediation. This study explores the potential of Chlorella vulgaris and Scenedesmus quadricauda, for crude oil spill phycoremediation under mixotrophic conditions and varying crude oil concentrations (0.5-2%). C. vulgaris demonstrated notable resilience, thriving up to 1% crude oil exposure, while S. quadricauda adapted to lower concentrations. Optimal growth for both was observed at 0.5% exposure. Chlorophyll a content in C. vulgaris increases at 0.5% exposure but declines above 1%, while a decline was noticeable in chlorophyll b in treatment groups above 1%. Carotenoid levels varied, displaying the highest levels at higher concentrations above 1.5%. Similarly, S. quadricauda showed increased chlorophyll a content at 0.5% exposure, with stable carotenoid levels and a decline in chlorophyll b content at higher concentrations. GC/MS analyses indicated C. vulgaris efficiently degraded aliphatic compounds like decane and tridecane, surpassing S. quadricauda in degrading both aliphatic and aromatic hydrocarbons. Growth kinetics was best represented by the modified Gompertz and logistic models. These findings highlight the species-specific adaptability and optimal concentration for microalgae to degrade crude oil effectively, advancing phycoremediation processes and strategies critical for environmental restoration.


This study marks the first exploration of both Chlorella vulgaris and the previously unexplored Scenedesmus quadricauda for crude oil phycoremediation potential under mixotrophic conditions. Additionally, it pioneers the modeling and study of algae growth kinetics in response to crude oil exposure. Notably, this research demonstrated the adaptability and efficiency of C. vulgaris in degrading crude oil components under mixotrophic conditions up to a level of 1%, while S. quadricauda showed similar capabilities at a concentration of 0.5%.

9.
J Environ Manage ; 355: 120508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457896

RESUMEN

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Suelo/química , Ecosistema , Contaminantes del Suelo/análisis , Hidrocarburos/metabolismo , Microbiología del Suelo
10.
J Environ Manage ; 367: 121938, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079499

RESUMEN

We study the relationship between crude oil price volatility and corporate environmental performance. Using an extensive dataset from 32 countries consisting of 18,464 firm-year observations, we provide strong evidence that oil price volatility significantly increases firms' environmental performance. Our main inference is robust when using alternative measures of oil price volatility and environmental performance, alternative econometric specifications and samples, and several approaches to control for endogeneity. In a set of additional analyses, we first conduct a difference-in-differences analysis that exploits the Arab Spring as an exogenous oil price volatility increase and document a stronger relationship between oil price volatility and environmental performance in the aftermath of the Arab Spring. We second identify (i) capital expenditures and (ii) alternative energy importation as two mechanisms through which oil price volatility influences environmental performance. We finally show that national culture plays a significant role in moderating the relationship between oil price volatility and environmental performance. Taken together, our empirical findings highlight the role of economic uncertainty in affecting firms' environmental performance and provide significant contributions to management and policymakers.


Asunto(s)
Petróleo , Comercio , Ambiente
11.
J Environ Manage ; 366: 121737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986384

RESUMEN

In addressing the ramifications of climate change, the shipping industry, reliant on energy, has been integrated into the Emissions Trading System (ETS). This study utilizes the quantile connectedness model to investigate the information spillover mechanisms and extreme time-varying interconnections among carbon, energy, and shipping markets. Whether climate policy uncertainty drives the extreme interconnections is also discussed during both pre- and post-Paris Agreement periods, by using GARCH-MIDAS model. The empirical findings underscore the following key points: (i) the systemic connectedness is highly sensitive to market conditions and major events, increasing significantly under extreme market conditions; (ii) following the implementation of the Paris Agreement, an elevated level of informational interdependence has manifested between the carbon market and the energy and shipping sectors; (iii) the information transfer mechanism between carbon and shipping sectors creates direct and indirect spillover paths, with crude oil market mediating the indirect path; (iv) climate policy uncertainty greatly affects the extreme time-varying interconnections, and this impact has decreased after the Paris Agreement came into effect. These results offer valuable insights for market policymakers and shipping companies in achieving a balance between carbon emission reduction and shipping business, particularly amidst heightened climate policy uncertainty.


Asunto(s)
Carbono , Cambio Climático , Incertidumbre , Modelos Teóricos
12.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474696

RESUMEN

Heavy crude oil poses challenges in terms of extraction and transportation due to its high viscosity. In the pursuit of effective methods to reduce viscosity in heavy crude oil, this study investigates the potential of imidazolium chloride ionic liquids with varying alkyl chain lengths as viscosity reducers. The experimental results demonstrate that the addition of 1-dodecyl-3-methylimidazole chloride ([C12-MIM]Cl) leads to a maximum viscosity reduction of 49.87%. Solubility parameters were calculated based on characterization of the average molecular structure of the asphaltenes. The viscosity reduction effect is enhanced when the solubility parameter of the ionic liquid closely matches that of the asphaltene. The initial asphaltene deposition point of heavy crude oil is increased from 63% to 68% with the addition of 150 mg/L [C12-MIM]Cl. Furthermore, the average particle size of asphaltene deposits decreases from 79.35 µm to 48.54 µm. The viscosity of heavy crude oil is influenced by the aggregation of asphaltenes. The ability of ionic liquids, especially those with longer alkyl chains, to disperse asphaltene molecules and reduce viscosity has been confirmed through molecular dynamics and quantum mechanical simulations.

13.
Molecules ; 29(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064886

RESUMEN

Nanoparticles have been widely applied to treat emulsion-containing wastewater in the form of chemical demulsifiers, such as SiO2, Fe3O4, and graphene oxide (GO). Owing to their asymmetric structures and selective adsorption, Janus nanoparticles show greater application potential in many fields. In the present work, the novel magnetic Janus graphene oxide (MJGO) nanoparticle was successfully prepared by grafting magnetic Fe3O4 to the surface of the JGO, and its demulsifying ability to treat a crude oil-in-water emulsion was evaluated. The MJGO structure and its magnetic intensity were verified by Fourier-transform infrared spectra (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and magnetization saturation (MS) tests. Compared with GO and JGO, MJGO displayed the superior efficiency (>96%) to demulsify the crude oil-in-water emulsion, which can be attributed to the reduced electrostatic repulsion between MJGO and the emulsion droplets. Furthermore, the effects of pH and temperature on the demulsification performance of MJGO were also studied. Lastly, the recyclability of MJGO largely reduced the cost of demulsifiers in separating crude oil and water. The current research presents an efficient and recyclable demulsifier, which provides a new perspective for the structural design of nanomaterials and their application in the field of demulsification.

14.
Environ Monit Assess ; 196(7): 605, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856803

RESUMEN

Petroleum hydrocarbons (PHCs) are produced from industrial discharges, storage leakages, accidental spills, and operational failures. The hazardous nature of PHCs causes serious health risks and threatens the entire aquatic habitat. In this research work, the investigation of the removal of total petroleum hydrocarbons (TPHs) from the contaminated water is carried out utilizing a novel hypercross-linked resin, MAICY, which is generated by condensation of commercially available precursors. The chemical structures of MAICY have been examined extensively by FESEM, FT-IR, solid (CP-MAS) 13C-NMR, and TGA. A comprehensive analysis for adsorption parameters of TPHs has been performed, and different models such as Langmuir and Freundlich isotherms have been employed where the Freundlich isotherm was found to be the best fit for removal of THPs (R2= 0.9991). The results revealed that the performance of MAICY for the adsorption of TPHs from contaminated water gives a maximum adsorption capacity (qe) of 146 mg.g-1. The results of various parameters hinted that the contact time (0.25-4 h), the dosage of adsorbent (0.17 g/L), pH (7), and concentration of TPHs (26.5 mg/L) have controlled the overall adsorptive performance. Moreover, the kinetic data of qe(expt.) and qe(calc.) for adsorption of TPHs disclosed the regression values (R2) for pseudo-first order (R2= 0.9921) and pseudo-second order (R2= 0.9891). Additionally, based on CHI factor (X2) error estimations, the data was shown to be more consistent with pseudo-first-order kinetics. Moreover, MAICY demonstrated excellent reusability and recycling properties for up to four consecutive adsorption-desorption cycles.


Asunto(s)
Hidrocarburos , Petróleo , Triazinas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Adsorción , Petróleo/análisis , Triazinas/química , Triazinas/análisis , Cinética
15.
Entropy (Basel) ; 26(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785607

RESUMEN

Precisely forecasting the price of crude oil is challenging due to its fundamental properties of nonlinearity, volatility, and stochasticity. This paper introduces a novel hybrid model, namely, the KV-MFSCBA-G model, within the decomposition-integration paradigm. It combines the mixed-frequency convolutional neural network-bidirectional long short-term memory network-attention mechanism (MFCBA) and generalized autoregressive conditional heteroskedasticity (GARCH) models. The MFCBA and GARCH models are employed to respectively forecast the low-frequency and high-frequency components decomposed through variational mode decomposition optimized by Kullback-Leibler divergence (KL-VMD). The classification of these components is performed using the fuzzy entropy (FE) algorithm. Therefore, this model can fully exploit the advantages of deep learning networks in fitting nonlinearities and traditional econometric models in capturing volatilities. Furthermore, the intelligent optimization algorithm and the low-frequency economic variable are introduced to improve forecasting performance. Specifically, the sparrow search algorithm (SSA) is employed to determine the optimal parameter combination of the MFCBA model, which is incorporated with monthly global economic conditions (GECON) data. The empirical findings of West Texas Intermediate (WTI) and Brent crude oil indicate that the proposed approach outperforms other models in evaluation indicators and statistical tests and has good robustness. This model can assist investors and market regulators in making decisions.

16.
Chemphyschem ; 24(24): e202300587, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37880197

RESUMEN

Studying the characteristics and molecular mechanisms of liquid self-diffusion coefficient and viscosity changes is of great significance for, e. g., chemical and petroleum processing. As examples of highly complex liquid,an asphaltene-free high-acid and high-viscosity crude oil and its extracted fractions were studied by comparing their 1 H DOSY diffusion maps. The crude oil exhibited a polydisperse diffusion distribution, including multiple diffusion portions with diffusion coefficients much smaller than that of any single fraction in independent diffusion. The main mechanism that leads to the decreases in the diffusion coefficients of crude oil is attributed to diffusion resistance enhanced by Dynamical Molecular-Interaction Networks (DMINs), rather than by enlargement of the diffusion species caused by molecular aggregation. Constructed through the synergistic interactions of various polar molecules in crude oil, DMINs dynamically bind polar molecules, trap polarizable molecules, and spatially hinder the free motion of non-polar molecules. Overall, this reduces the mobility of all molecular species, as illustrated by the decreased diffusion coefficients. This study demonstrates that DOSY is a powerful NMR method to investigate molecular motion abilities also in complex mixtures. In addition, the insights in the influence of the interaction matrix on the molecular mobility also help to understand the contribution of "structural viscosity" to the viscosity of heavy oil.

17.
Int Microbiol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010566

RESUMEN

Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.

18.
Curr Allergy Asthma Rep ; 23(6): 299-311, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166706

RESUMEN

PURPOSE OF REVIEW: Burning of petroleum products has been consistently associated with adverse respiratory health effects. Combustion of crude oil, specifically, produces toxic byproducts, but there have been relatively few studies of health effects. Burning of crude oil is increasingly employed as a means of mitigating environmental disasters despite the potential health risks to workers involved in clean-up efforts. Here, we review epidemiological studies of respiratory effects following unique crude oil burning events to (1) characterize respiratory health effects from this nontraditional occupational exposure and (2) identify approaches used to characterize exposures that could be applied to future disaster-related studies. RECENT FINDINGS: We searched PubMed and EMBASE for references from inception to January 30, 2023. We also manually screened references cited in eligible articles. We identified 14 eligible publications. Our review suggests that exposure to crude oil combustion has adverse respiratory effects, including reduced lung function and increased occurrence of respiratory symptoms and disease. However, the evidence is inconsistent, and quality of data varied across studies. While some studies used quantitative, modeled exposure estimates, most used self-reported proxies of exposure. Although disasters involving crude oil combustion are relatively rare, limited evidence suggests that some worker populations may be at risk for respiratory effects from burning exposures in disaster settings. Future studies that use improved exposure assessment methods (e.g., personal monitors, remote sensing data) may help further quantify the respiratory risk from crude oil burning exposures.


Asunto(s)
Desastres , Exposición Profesional , Contaminación por Petróleo , Petróleo , Trastornos Respiratorios , Enfermedades Respiratorias , Humanos , Petróleo/efectos adversos , Contaminación por Petróleo/efectos adversos , Exposición Profesional/efectos adversos , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/etiología
19.
Environ Sci Technol ; 57(48): 19304-19315, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37963269

RESUMEN

Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.


Asunto(s)
Petróleo , Animales , Petróleo/toxicidad , Invertebrados/fisiología , Metamorfosis Biológica , Ecosistema , Estadios del Ciclo de Vida , Larva/metabolismo
20.
Environ Sci Technol ; 57(30): 11022-11031, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37465931

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have frequently been suspected of governing crude oil toxicity because of similar morphological defects in fish. However, PAH concentrations are often not high enough to explain the observed crude oil toxicity. We hypothesize that one PAH can enhance the metabolism and toxicity of another PAH when administered as a mixture. Early life stage Atlantic haddock (Melanogrammus aeglefinus) were in this study exposed to phenanthrene in the presence and absence of 3-methylchrysene that is known to induce the metabolic enzyme cytochrome P450 1A via cyp1a gene expression. Uptake, metabolism, and multiple toxicity endpoints were then measured in a time-course study up to 3 days post-hatching. Passive dosing provided aqueous concentrations ≈180 µg/L for phenanthrene and ≈0.6 µg/L for 3-methylchrysene, which resulted in tissue concentrations ≈60 µg/g ww for phenanthrene and ≈0.15 µg/g ww for 3-methylchrysene. The low concentration of 3-methylchrysene led to the elevated expression of cyp1a but no toxicity. Levels of phenanthrene metabolites were 5-fold higher, and morphological defects and cardiotoxicity were consistently greater when co-exposed to both compounds relative to phenanthrene alone. This work highlights the metabolic activation of PAH toxicity by a co-occurring PAH, which can lead to excess toxicity, synergistic effects, and the overproportional contribution of PAHs to crude oil toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA